Zerfällungskörper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 16:40 Sa 12.12.2009 | Autor: | StefanK. |
Aufgabe | Sei [mm] K=\IF_{2}(T), f=X^2 [/mm] + X + T [mm] \in [/mm] K[X], [mm] g=X^2 [/mm] + T [mm] \in [/mm] K[X]
Seien [mm] K_{f} [/mm] und [mm] K_{g} [/mm] Zerfällungskörper von f und g. Was ist deren Grad über K? |
Hallo allerseits.
Bei dieser Aufgabe habe ich bereits in einem vorherigen Schritt zeigen müssen, dass beide Polynome irreduzibel sind und f separable, g inseparable ist. Ich habe jetzt nut leider keine Ahnung, wie ich aus den ganzen Informationen Rückschlüsse auf den Grad der Zerfällungskörper ziehen kann.
Hat da jemand eine Idee?
Viele Grüße
Stefan
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 00:26 So 13.12.2009 | Autor: | felixf |
Hallo Stefan!
> Sei [mm]K=\IF_{2}(T), f=X^2[/mm] + X + T [mm]\in[/mm] K[X], [mm]g=X^2[/mm] + T [mm]\in[/mm]
> K[X]
> Seien [mm]K_{f}[/mm] und [mm]K_{g}[/mm] Zerfällungskörper von f und g. Was
> ist deren Grad über K?
>
> Hallo allerseits.
> Bei dieser Aufgabe habe ich bereits in einem vorherigen
> Schritt zeigen müssen, dass beide Polynome irreduzibel
> sind und f separable, g inseparable ist. Ich habe jetzt nut
> leider keine Ahnung, wie ich aus den ganzen Informationen
> Rückschlüsse auf den Grad der Zerfällungskörper ziehen
> kann.
> Hat da jemand eine Idee?
Stell dir vor du hast ein irreduzibles Polynom $h [mm] \in [/mm] K[X]$ von Grad 2, $K$ irgendein Koerper, und sei $L$ ein Erweiterungskoerper von $K$, indem $h$ eine Nullstelle hat. Ueberleg dir mal, warum dann beide Nullstellen in $L$ liegen. Also: wie ist der Grad des Zerfaellungskoerpers von $h$ ueber $K$?
LG Felix
|
|
|
|