Zerfällungskörper < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 13:35 Do 08.02.2007 | Autor: | Blefix |
Aufgabe | Geben Sie einen Zerfällungskörper für f = [mm] (X^{2}-2)(X^{3}+1) \in \IQ[x] [/mm] an. Bestimmen Sie ein primitives Element, den grad der Körpererweiterung und die Galois-Gruppe über [mm] \IQ [/mm] |
Hi,
wäre sehr dankbar, wenn mir jemand bei dieser Aufgabe zu Hilfe gehen würde.
Um ehrlich zu sein hab ich ziemliche Probleme mit dieser Thematik.
Zum Thema Zerfällungskörper hab ich gelesen, dass man die Nullstellen berechnen soll.
Da bin ich auf folgendes gekommen:
[mm] X^{2}-2 [/mm] Nullstellen: [mm] +\wurzel{2} [/mm] und - [mm] \wurzel{2}
[/mm]
[mm] X^{3}+1 [/mm] Nullstellen: [mm] +\wurzel[3]{-1} [/mm] und - [mm] \wurzel[3]{-1}
[/mm]
Allerdings hab ich dann gleich das Problem, dass man von (-1) keine Wurzel ziehen darf. Ersetze ich dann (-1) mit [mm] i^2?
[/mm]
Und dann fehlt mir ja noch eine dritte Nullstelle.
Ich bin mir noch nicht ganz sicher wie es dann weiter geht, aber vielleicht kann sich jemand erst einmal die Nullstellen ansehen und nen kleinen Tipp geben was ich dann machen muss.
Habt nen schönen Tag
|
|
|
|
Hallo Blefix!
Um die Zerfällungskörper zu berechnen brauchst du rationale Nullstellen, da du dich in [mm] $\IQ$ [/mm] bewegst. Das Polynom [mm] $X^2-2$ [/mm] kann also nicht weiter zerlegt werden, da [mm] $\pm\sqrt [/mm] 2$ nicht in [mm] $\IQ$ [/mm] liegen.
[mm] $X^3+1$ [/mm] hat in der Tat drei Nullstellen. Aus $-1$ kann man zwar (in [mm] $\IQ$) [/mm] keine Wurzel ziehen, aber hier geht es ja um die dritte Wurzel. Es gilt [mm] $X^3+1=(X+1)(X^2-X+1)$. [/mm] Die beiden Nullstellen von [mm] $X^2-X+1$ [/mm] sind komplex, das Polynom zerfällt also nicht weiter über [mm] $\IQ$.
[/mm]
Hilft dir das weiter?
Gruß, banachella
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 18:37 Do 08.02.2007 | Autor: | Blefix |
HI,
erst einmal Danke.
Hab ich dich jetzt richtig verstanden, dass wir als Nullstelle also nur
-1 haben, da die Nullstellen von [mm] x^{2}+x+1 [/mm] in [mm] \IQ [/mm] nicht defniert sind?
Dann wäre L= [mm] \IQ(-1) [/mm] kann das überhaupt negativ sein?
Und was wäre dann der Grad?
Wahrscheinlich blamiere ich mich grade bis auf die Knochen, aber ich verstehe das mit dem Zerfällungskörper einfach nicht.
Hab im Internet nach anderen Beispielen gesucht, doch die kann ich meistens nicht nachvollziehen.
Wenn ich nach denen gingen würde ich den Zerfällungskörper [mm] L:=\IQ (\wurzel{2},\wurzel{3}) [/mm] haben, aber darauf komme ich doch nicht, wenn ich die Nustellen berechne.
Hoffentlich erbarmt sich jemand meiner
LG Blefix
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 07:45 Fr 09.02.2007 | Autor: | statler |
> HI,
>
> erst einmal Danke.
>
> Hab ich dich jetzt richtig verstanden, dass wir als
> Nullstelle also nur
> -1 haben, da die Nullstellen von [mm]x^{2}-x+1[/mm] in [mm]\IQ[/mm] nicht
> defniert sind?
> Dann wäre L= [mm]\IQ(-1)[/mm] kann das überhaupt negativ sein?
> Und was wäre dann der Grad?
[mm]\IQ(-1)[/mm] ist natürlich [mm] \IQ, [/mm] aber wir haben doch gerade fesgestellt, daß das Polynom über [mm] \IQ [/mm] nicht völlig in Linearfaktoren zerfällt. Es spaltet einen linearen Faktor ab, und übrig bleibt ein über [mm] \IQ [/mm] irreduzibles Polynom vom Grad 2.
> Wahrscheinlich blamiere ich mich grade bis auf die Knochen,
> aber ich verstehe das mit dem Zerfällungskörper einfach
> nicht.
Du kannst dir das z. B. auch so vorstellen, daß die ganze Chose in [mm] \IC [/mm] stattfindet. Über [mm] \IC [/mm] zerfällt jedes Polynom in Linearfaktoren, das ist einer der ganz wichtigen Sätze in der Mathematik. Die Linearfaktoren in [mm] \IC [/mm] kannst du mit Schulkenntnissen bestimmen! Der Zerfällungskörper liegt also zwischen [mm] \IQ [/mm] und [mm] \IC, [/mm] und er muß die Nullstellen des Polynoms enthalten.
> Hab im Internet nach anderen Beispielen gesucht, doch die
> kann ich meistens nicht nachvollziehen.
> Wenn ich nach denen gingen würde ich den Zerfällungskörper
> [mm]L:=\IQ (\wurzel{2},\wurzel{3})[/mm] haben, aber darauf komme ich
> doch nicht, wenn ich die Nustellen berechne.
Es muß wohl [mm]L:=\IQ (\wurzel{2},\wurzel{-3})[/mm] heißen, berechne mal die komplexen Nullstellen mit der p-q-Formel oder sonstwie.
> Hoffentlich erbarmt sich jemand meiner
Naja, weil Freitag ist ...
Gruß aus HH-Harburg
Dieter
|
|
|
|