matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAbbildungen und MatrizenZentralprojektion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Abbildungen und Matrizen" - Zentralprojektion
Zentralprojektion < Abbildungen+Matrizen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Abbildungen und Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zentralprojektion: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 14:45 Di 10.04.2007
Autor: musicandi88

Hallo,

ich hab ein Problem...

S(-2/3/4) sei mein Projektionszentrum

ich soll in xy-Ebene projizieren.

Ich komm auf folgende Abbildungsmatrix:

[mm] A=\begin{pmatrix} 1 & 0&\bruch{2}{3} \\ 0 & 1&-1 \\ 0&0&0 \end{pmatrix} [/mm]

Nun soll ch die Bildpunte folgender Punkte berechnen:

E(3/2/2) F(3/5/2) G(0/3/5) H(0/2/3)

So ich hab folgende Bildpunkte berechnet, auf Grundlage folgender Gleichung

[mm] \vec{p'}=A*\vec{p} [/mm]

[mm] E'(\bruch{13}{3}/0/0) F'(\bruch{13}{3}/3/0) G'(\bruch{10}{3}/-2/0) [/mm]   H'(2/-1/0)

In der Lösung werden nun folgende "richtige" Bildpunkte angegeben... Nun ist die Frage, wo mein Fehler liegt..

[mm] E{'}_{Lös}(8/1/0) F{'}_{Lös}(8/7/0) G{'}_{Lös}(6/11/0) H{'}_{Lös}(6/-1/0) [/mm]

Liebe Grüße
Andreas

        
Bezug
Zentralprojektion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:15 Di 10.04.2007
Autor: musicandi88

Hallo,

es kann doch nicht sein, dass es Zentralprojektionen gibt, die sich nicht durch Abbildungsmatrixen darstellen lassen oder?

Liebe Grüße

Bezug
        
Bezug
Zentralprojektion: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:20 Do 12.04.2007
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Abbildungen und Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]