matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperZentralisator charakteristisch
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Gruppe, Ring, Körper" - Zentralisator charakteristisch
Zentralisator charakteristisch < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zentralisator charakteristisch: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:05 Do 12.11.2009
Autor: piccolo1986

Hey, wenn G eine Gruppe ist und U eine Untergruppe von G, wie kann ich dann zeigen, dass der Zentralisator von U in G charakteristisch in G ist.

Also der Zentralisator ist doch: [mm] C_{g}(U)=\{g\in G:gu=ug \forall u\in U \} [/mm]

wie kann ich nun weiter vorgehen??

mfg piccolo

        
Bezug
Zentralisator charakteristisch: Antwort
Status: (Antwort) fertig Status 
Datum: 23:44 Do 12.11.2009
Autor: felixf

Hallo!

> Hey, wenn G eine Gruppe ist und U eine Untergruppe von G,
> wie kann ich dann zeigen, dass der Zentralisator von U in G
> charakteristisch in G ist.

Nun, dass dies eine Untergruppe ist weisst du ja schon. Also musst du noch zeigen: fuer jeden Automorphismus [mm] $\sigma [/mm] : G [mm] \to [/mm] G$ ist [mm] $\sigma(C_G(U)) [/mm] = [mm] C_G(U)$. [/mm]

Allerdings hab ich da Zweifel. Eine charakteristische Untergruppe ist ja automatisch ein Normalteiler. Aber nicht jeder Zentralisator ist ein Normalteiler.

Hast du irgendeine Voraussetzung an $U$ vergessen?

LG Felix


Bezug
                
Bezug
Zentralisator charakteristisch: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:19 Fr 13.11.2009
Autor: piccolo1986

oh ja, sorry, U soll charakteristisch in G sein.

Bezug
                        
Bezug
Zentralisator charakteristisch: Antwort
Status: (Antwort) fertig Status 
Datum: 23:44 Fr 13.11.2009
Autor: felixf

Hallo!

> oh ja, sorry, U soll charakteristisch in G sein.  

Ja, damit geht es.

Fang doch einfach mal an loszurechnen: nimm dir einen Automorphismus [mm] $\sigma [/mm] : G [mm] \to [/mm] G$ und versuche zu zeigen, dass [mm] $\sigma(C_G(U)) \subseteq C_G(U)$ [/mm] ist (durch ersetzen von [mm] $\sigma$ [/mm] durch [mm] $\sigma^{-1}$ [/mm] und Anwenden von [mm] $\sigma$ [/mm] auf die entstehende Gleichung bekommst du auch die andere Inklusion).

Schreib doch mal auf wie weit du kommst.

LG Felix


Bezug
                                
Bezug
Zentralisator charakteristisch: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:14 Di 17.11.2009
Autor: piccolo1986

hey, ok danke, habs jetzt hinbekommen, is ja gar nicht so schwer, wenn man erstmal die Idee hat.

danke nochmals

mfg piccolo

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]