Zentralisator/Normalisator < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Bestimmen Sie den Zentralisator sowie den Normalisator von [mm] S_{k}\times S_{k} [/mm] in [mm] S_{2 k } [/mm] für $ k [mm] \ge [/mm] 3 $. Dabei wirkt die erste Komponente auf 1 bis k und die andere auf k+1 bis 2k. Bestimmen Sie außerdem den Quotienten $ [mm] N_{ S_{2k}} [/mm] ( [mm] S_{k} \times S_{k}) [/mm] / [mm] S_{k}\times S_{k} [/mm] $ |
Hallo allerseits!
Ich konnte mich nie wirklich mit Permutationsgruppen anfreunden, deshalb bitte ich um Überprüfung.
Also ich denke, dass der Zentralisator trivial ist, weil $ [mm] Z(S_{k} [/mm] ) $ trivial ist und weil es keine Permutation außerhalb [mm] S_{k}\times S_{k} [/mm] geben kann, die im Zentralisator liegt.
[mm] S_{2k} [/mm] wirkt auf den disjunkten Zerlegungen von [mm] \{1, ..., 2k \}. [/mm] Ist der Normalisator nicht einfach der Stabilisator der Zerlegung [mm] \{1,..., k\} \dot\cup \{k+1, ..., 2k\} [/mm] ? Dieser wird erzeugt von $ [mm] S_{k} \times S_{k} [/mm] $ und der vom Produkt aller Transpositionen $ (i, i+k) $ mit $ 1 [mm] \le [/mm] i [mm] \le [/mm] k $ erzeugten Gruppe?
Somit wäre der Quotient gerade die zyklische Gruppe der Ordnung 2?
LG
Salamence
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 08:12 Fr 13.11.2015 | Autor: | hippias |
> Bestimmen Sie den Zentralisator sowie den Normalisator von
> [mm]S_{k}\times S_{k}[/mm] in [mm]S_{2 k }[/mm] für [mm]k \ge 3 [/mm]. Dabei wirkt
> die erste Komponente auf 1 bis k und die andere auf k+1 bis
> 2k. Bestimmen Sie außerdem den Quotienten [mm]N_{ S_{2k}} ( S_{k} \times S_{k}) / S_{k}\times S_{k}[/mm]
>
> Hallo allerseits!
>
> Ich konnte mich nie wirklich mit Permutationsgruppen
> anfreunden, deshalb bitte ich um Überprüfung.
>
> Also ich denke, dass der Zentralisator trivial ist, weil
> [mm]Z(S_{k} )[/mm] trivial ist und weil es keine Permutation
> außerhalb [mm]S_{k}\times S_{k}[/mm] geben kann, die im
> Zentralisator liegt.
Das musst Du auf jeden Fall ausführlicher begründen.
>
> [mm]S_{2k}[/mm] wirkt auf den disjunkten Zerlegungen von [mm]\{1, ..., 2k \}.[/mm]
> Ist der Normalisator nicht einfach der Stabilisator der
> Zerlegung [mm]\{1,..., k\} \dot\cup \{k+1, ..., 2k\}[/mm] ? Dieser
> wird erzeugt von [mm]S_{k} \times S_{k}[/mm] und der vom Produkt
> aller Transpositionen [mm](i, i+k)[/mm] mit [mm]1 \le i \le k[/mm] erzeugten
> Gruppe?
Eine von diesen Transpositionen erzeugte Permutationsgruppe ist doch eher [mm] $\cong S_{k}$? [/mm] Jedenfalls hat nicht die Ordnung $2$.
>
> Somit wäre der Quotient gerade die zyklische Gruppe der
> Ordnung 2?
>
> LG
> Salamence
|
|
|
|