matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStatistik (Anwendungen)Zeitreihen Analyse
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Statistik (Anwendungen)" - Zeitreihen Analyse
Zeitreihen Analyse < Statistik (Anwend.) < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Statistik (Anwendungen)"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zeitreihen Analyse: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 21:14 Mi 02.01.2008
Autor: gandhito

Gegeben ein AR(1) Prozess

[mm] y_{t}-\mu= \phi(Y_{t-1}-\mu)+\epsilon_{t}, \epsilon_{t} \sim WN(0,\sigma^{2}) [/mm]

[mm] E(y_{t})= \mu [/mm]
[mm] \gamma(0) [/mm] = [mm] Var(y_{t})= \sigma^{2}/1-\phi^{2} [/mm]

Erwartungswert und Varianz heraus zu finden machen mir keine Probleme.
Wie finde ich aber [mm] \gamma(h)=Cov(y_{t},y_{t-h}) [/mm] ?

Lösung: [mm] \gamma(h)= \sigma^{2}\phi^{|h|}/1-\phi^{2}. [/mm]

Eine andere Aufgabe lautet:

Ein ARMA(1,1) Prozess sei gegeben.

[mm] y_{t}=\phi y_{t-1} [/mm] + [mm] \epsilon_{t} [/mm] - [mm] \theta \epsilon_{t-1} [/mm]

Gesucht: [mm] \gamma(k) [/mm] us [mm] \rho(k) [/mm]

Schaffe es einfach nicht diese 2 Aufgaben zu lösen. Bitte helft mir.


Mir bereitet das Herleiten der
Autokovarianzfunktionen schwierikeiten. Sowohl bei AR(1), AR(2)... oder MA(1)... ARMA usw. Kann mir jemand helfen? Weiss jemand wo das gut erklärt wird? Internet? Bücher? Wir benützen Rupperts "Statistics and Finance". Bringt mich leider nicht weiter.

        
Bezug
Zeitreihen Analyse: Antwort
Status: (Antwort) fertig Status 
Datum: 00:01 Do 03.01.2008
Autor: Blech


> Gegeben ein AR(1) Prozess
>  
> [mm]y_{t}-\mu= \phi(Y_{t-1}-\mu)+\epsilon_{t}, \epsilon_{t} \sim WN(0,\sigma^{2})[/mm]
>  
> [mm]E(y_{t})= \mu[/mm]
>  [mm]\gamma(0)[/mm] = [mm]Var(y_{t})= \sigma^{2}/(1-\phi^{2})[/mm]
>  
> Erwartungswert und Varianz heraus zu finden machen mir
> keine Probleme.
>  Wie finde ich aber [mm]\gamma(h)=Cov(y_{t},y_{t-h})[/mm] ?

[mm] $y_{t}-\mu= \phi(y_{t-1}-\mu)+\epsilon_{t}$ [/mm]
[mm] $\Rightarrow y_{t}-\mu= \phi^2(y_{t-2}-\mu)+\phi\epsilon_{t-1} +\epsilon_{t}$ [/mm]
[mm] $\Rightarrow y_{t}-\mu= \phi^h(y_{t-h}-\mu)+\sum_{k=0}^{h-1}\phi^k\epsilon_{t-k}$ [/mm]
[mm] $\Rightarrow Cov(y_{t},y_{t-h}) [/mm] = [mm] Cov(y_{t}-\mu,y_{t-h}-\mu) [/mm] = [mm] Cov(\phi^h(y_{t-h}-\mu)+\sum_{k=0}^ {h-1}\phi^k\epsilon_{t-k},y_{t-h}-\mu) =\phi^h\gamma(0)$ [/mm]

weil die [mm] $\epsilon_{t-k}$ [/mm] unabhängig von [mm] $y_{t-h}$ [/mm] sind.
Die Rechnung ist für h>0, für negative h analog und da kommen die Betragsstriche im Exponenten her.

>  
> Lösung: [mm]\gamma(h)= \sigma^{2}\phi^{|h|}/(1-\phi^{2}).[/mm]
>  
> Eine andere Aufgabe lautet:
>  
> Ein ARMA(1,1) Prozess sei gegeben.
>  
> [mm]y_{t}=\phi y_{t-1}[/mm] + [mm]\epsilon_{t}[/mm] - [mm]\theta \epsilon_{t-1}[/mm]
>  
> Gesucht: [mm]\gamma(k)[/mm] us [mm]\rho(k)[/mm]

aus? und?

Hab die Aufgabe nicht gerechnet, aber im Zweifelsfall wird es ein ähnliches Indexgeschiebe wie oben.

> Mir bereitet das Herleiten der
> Autokovarianzfunktionen schwierikeiten. Sowohl bei AR(1),
> AR(2)... oder MA(1)... ARMA usw. Kann mir jemand helfen?
> Weiss jemand wo das gut erklärt wird? Internet? Bücher? Wir

Einführung in die Zeitreihenanalyse von Jens-Peter Kreiß und Georg Neuhaus, von Springer.


Bezug
                
Bezug
Zeitreihen Analyse: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:06 Do 03.01.2008
Autor: gandhito


> > Gegeben ein AR(1) Prozess
>  >  
> > [mm]y_{t}-\mu= \phi(Y_{t-1}-\mu)+\epsilon_{t}, \epsilon_{t} \sim WN(0,\sigma^{2})[/mm]
>  
> >  

> > [mm]E(y_{t})= \mu[/mm]
>  >  [mm]\gamma(0)[/mm] = [mm]Var(y_{t})= \sigma^{2}/(1-\phi^{2})[/mm]
>  
> >  

> > Erwartungswert und Varianz heraus zu finden machen mir
> > keine Probleme.
>  >  Wie finde ich aber [mm]\gamma(h)=Cov(y_{t},y_{t-h})[/mm] ?
>  
> [mm]y_{t}-\mu= \phi(y_{t-1}-\mu)+\epsilon_{t}[/mm]
>  [mm]\Rightarrow y_{t}-\mu= \phi^2(y_{t-2}-\mu)+\phi\epsilon_{t-1} +\epsilon_{t}[/mm]
>  
> [mm]\Rightarrow y_{t}-\mu= \phi^h(y_{t-h}-\mu)+\sum_{k=0}^{h-1}\phi^k\epsilon_{t-k}[/mm]
>  
> [mm]\Rightarrow Cov(y_{t},y_{t-h}) = Cov(y_{t}-\mu,y_{t-h}-\mu) = Cov(\phi^h(y_{t-h}-\mu)+\sum_{k=0}^ {h-1}\phi^k\epsilon_{t-k},y_{t-h}-\mu) =\phi^h\gamma(0)[/mm]
>  
> weil die [mm]\epsilon_{t-k}[/mm] unabhängig von [mm]y_{t-h}[/mm] sind.

Kann man in diesem Fall die [mm] \epsilon [/mm] einfach rausstreichen? Und ist cov(a x, x)= a Var(x)

>  Die Rechnung ist für h>0, für negative h analog und da
> kommen die Betragsstriche im Exponenten her.
>  
> >  

> > Lösung: [mm]\gamma(h)= \sigma^{2}\phi^{|h|}/(1-\phi^{2}).[/mm]
>  >  
> > Eine andere Aufgabe lautet:
>  >  
> > Ein ARMA(1,1) Prozess sei gegeben.
>  >  
> > [mm]y_{t}=\phi y_{t-1}[/mm] + [mm]\epsilon_{t}[/mm] - [mm]\phi \epsilon_{t-1}[/mm]
>  
> >  

> > Gesucht: [mm]\gamma(k)[/mm] und [mm]\rho(k)[/mm]
>  
>
>  
> Hab die Aufgabe nicht gerechnet, aber im Zweifelsfall wird
> es ein ähnliches Indexgeschiebe wie oben.
>  
> > Mir bereitet das Herleiten der
> > Autokovarianzfunktionen schwierikeiten. Sowohl bei AR(1),
> > AR(2)... oder MA(1)... ARMA usw. Kann mir jemand helfen?
> > Weiss jemand wo das gut erklärt wird? Internet? Bücher? Wir
>
> Einführung in die Zeitreihenanalyse von Jens-Peter Kreiß
> und Georg Neuhaus, von Springer.
>  


Bezug
                        
Bezug
Zeitreihen Analyse: Antwort
Status: (Antwort) fertig Status 
Datum: 16:14 Do 03.01.2008
Autor: Blech


> > [mm]y_{t}-\mu= \phi(y_{t-1}-\mu)+\epsilon_{t}[/mm]
>  >  [mm]\Rightarrow y_{t}-\mu= \phi^2(y_{t-2}-\mu)+\phi\epsilon_{t-1} +\epsilon_{t}[/mm]
>  
> >  

> > [mm]\Rightarrow y_{t}-\mu= \phi^h(y_{t-h}-\mu)+\sum_{k=0}^{h-1}\phi^k\epsilon_{t-k}[/mm]
>  
> >  

> > [mm]\Rightarrow Cov(y_{t},y_{t-h}) = Cov(y_{t}-\mu,y_{t-h}-\mu) = Cov(\phi^h(y_{t-h}-\mu)+\sum_{k=0}^ {h-1}\phi^k\epsilon_{t-k},y_{t-h}-\mu) =\phi^h\gamma(0)[/mm]
>  
> >  

> > weil die [mm]\epsilon_{t-k}[/mm] unabhängig von [mm]y_{t-h}[/mm] sind.
> Kann man in diesem Fall die [mm]\epsilon[/mm] einfach rausstreichen?

[mm] $Cov(\phi^h(y_{t-h}-\mu)+\sum_{k=0}^ {h-1}\phi^k\epsilon_{t-k},y_{t-h}-\mu)=E((\phi^h(y_{t-h}-\mu)+\sum_{k=0}^ {h-1}\phi^k\epsilon_{t-k})(y_{t-h}-\mu))=$ [/mm]
[mm] $=E((\phi^h(y_{t-h}-\mu))(y_{t-h}-\mu))+\sum_{k=0}^ {h-1}\phi^k\underbrace{E(\epsilon_{t-k}(y_{t-h}-\mu))}_{=E(\epsilon_{t-k})E(y_{t-h}-\mu)\ \text{wg. Unabh.}}$ [/mm]

> Und ist cov(a x, x)= a Var(x)

Das, sowie der erste Schritt [mm] ($Cov(y_{t},y_{t-h}) [/mm] = [mm] Cov(y_{t}-\mu,y_{t-h}-\mu)$) [/mm] folgt direkt aus der Definition der Kovarianz ( $Cov(X,Y)=E(X-E(X))(Y-E(Y))$ ). Einfach einsetzen.


Bezug
        
Bezug
Zeitreihen Analyse: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 03:53 Fr 11.01.2008
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Statistik (Anwendungen)"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]