matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferentiationZeitdefinition
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Differentiation" - Zeitdefinition
Zeitdefinition < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zeitdefinition: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:06 So 29.04.2012
Autor: sissenge

Es geht um zweiInertialsysteme in dem einem läuft eine ungenaue Uhr mit T=T(t) und im anderen die wahre Zeit t.

Für die Geschwindigkeit gilt dann ja
[mm] v=\bruch{dx}{dt}=\bruch{dx}{dT}\bruch{dT}{dt} [/mm]

Für die Beschleunigung folgt
[mm] a=d^{2}x/dt^{2} [/mm]

Aber den nächsten Schritt verstehe ich nicht
[mm] =\bruch{d^{2}x}{dT^{2}}(\bruch{dT}{dt})^{2} [/mm] + [mm] \bruch{dx d^{2}T}{dT dt^{2}} [/mm]
wieso ist beim zweiten Faktor beim ersten Summanden ein Quadrat?!!

        
Bezug
Zeitdefinition: Antwort
Status: (Antwort) fertig Status 
Datum: 15:28 So 29.04.2012
Autor: notinX

Hallo,

> Es geht um zweiInertialsysteme in dem einem läuft eine
> ungenaue Uhr mit T=T(t) und im anderen die wahre Zeit t.
>  
> Für die Geschwindigkeit gilt dann ja
>  [mm]v=\bruch{dx}{dt}=\bruch{dx}{dT}\bruch{dT}{dt}[/mm]
>  
> Für die Beschleunigung folgt
>  [mm]a=d^{2}x/dt^{2}[/mm]
>
> Aber den nächsten Schritt verstehe ich nicht
> [mm]=\bruch{d^{2}x}{dT^{2}}(\bruch{dT}{dt})^{2}[/mm] + [mm]\bruch{dx d^{2}T}{dT dt^{2}}[/mm]
>  
> wieso ist beim zweiten Faktor beim ersten Summanden ein
> Quadrat?!!

rechne nach, v wird nach der Produktregel abgeleitet:
[mm] $a=\frac{\mathrm{d}v}{\mathrm{d}t}=\frac{\mathrm{d}}{\mathrm{d}t}\left(\frac{\mathrm{d}x}{\mathrm{d}T}\frac{\mathrm{d}T}{\mathrm{d}t}\right)=\frac{\mathrm{d}T}{\mathrm{d}t}\cdot\frac{\mathrm{d}}{\mathrm{d}t}\left(\frac{\mathrm{d}x}{\mathrm{d}T}\right)+\frac{\mathrm{d}x}{\mathrm{d}T}\cdot\frac{\mathrm{d}}{\mathrm{d}t}\left(\frac{\mathrm{d}T}{\mathrm{d}t}\right)$ [/mm]
Der erste Summand ist nun:
[mm] $\frac{\mathrm{d}T}{\mathrm{d}t}\cdot\frac{\mathrm{d}}{\mathrm{d}t}\left(\frac{\mathrm{d}x}{\mathrm{d}T}\right)=\frac{\mathrm{d}T}{\mathrm{d}t}\cdot\left(\frac{\mathrm{d^{2}}x}{\mathrm{d}T^{2}}\cdot\frac{\mathrm{d}T}{\mathrm{d}t}\right)=\frac{\mathrm{d^{2}}x}{\mathrm{d}T^{2}}\cdot\left(\frac{\mathrm{d}T}{\mathrm{d}t}\right)^{2}$ [/mm]
Die Ableitung [mm] $\frac{\mathrm{d}T}{\mathrm{d}t}$ [/mm] taucht als Faktor zweimal auf, das kann man als Quadrat zusammenfassen.

Gruß,

notinX

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]