matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenNumerik linearer GleichungssystemeZeilenweise skalierte Matrizen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Numerik linearer Gleichungssysteme" - Zeilenweise skalierte Matrizen
Zeilenweise skalierte Matrizen < Lin. Gleich.-systeme < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Numerik linearer Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zeilenweise skalierte Matrizen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:55 Sa 20.11.2004
Autor: AT-Colt

Hallo Leute,

ich sitze hier vor einer Aufgabe und habe das Gefühl, sie fast gelöst zu haben, aber der letzte Schritt will und will mir einfach nicht einfallen.


Aufgabe (Skalierung und Kondition):

Sei $A [mm] \in \IR^{n\timesn}$ [/mm] eine invertierbare, zeilenweise skalierte Matrix und $D [mm] \in \IR^{n\timesn}$ [/mm] eine Diagonalmatrix. Zeige, dass dann gilt:
[mm] $cond_\infty(DA) \ge cond_\infty(A)$ [/mm]
Welchen Effekt hat damit das zeilenweise Skalieren einer Matrix?

Bemerkung:
Eine Matrix heisst zeilenweise skaliert, wenn die Summe über die Beträge einer beliebigen Zeile 1 ergibt.
[mm] $||.||_\infty$ [/mm] beschreibt das Maximum aller Summen über die Beträge einer Zeile.

Lösungsansatz:

Es gelten:
[mm] $cond_\infty(A) [/mm] = [mm] ||A^{-1}||_\infty ||A||_\infty [/mm] = [mm] ||A^{-1}||_\infty [/mm] = [mm] \max_{1 \le i \le n} \{\summe_{j=1}^{n} |a_{ij}^{inv}|\}$ [/mm]
und
[mm] $cond_\infty(DA) [/mm] = [mm] ||A^{-1}D^{-1}||_\infty*\max_{1 \le i \le n} \{|d_{ii}|\} [/mm] = [mm] \max_{1 \le i \le n} \{\bruch{1}{|d_{ii}|}\summe_{j=1}^{n}|a_{ij}^{inv}|\}*\max_{1 \le i \le n} \{|d_{ii}|\}$ [/mm]

Zwischen diesen beiden Ausdrücken muss ich die oben beschriebene Ungleichung zeigen, auf den ersten Blick sieht das nicht so schwer aus, aber ein genauer Beweis fällt mir nicht ein :/

Die Skalierung einer Matrix verbessert unter Umständen die Kondition eines linearen Gleichungssystems und trägt so zur Stabilisierung des Algorithmus bei. Verschlechtern kann man die Kondition des Problems so nicht.
Dabei kann eine Diagonalmatrix D als Skalierungsmatrix angesehen werden.

greetz

AT-Colt

        
Bezug
Zeilenweise skalierte Matrizen: Abschätzen
Status: (Antwort) fertig Status 
Datum: 00:33 Mo 22.11.2004
Autor: mathemaduenn

Hallo AT-Colt,

> Sei [mm]A \in \IR^{n\timesn}[/mm] eine invertierbare, zeilenweise
> skalierte Matrix und [mm]D \in \IR^{n\timesn}[/mm] eine
> Diagonalmatrix. Zeige, dass dann gilt:
>  [mm]cond_\infty(DA) \ge cond_\infty(A)[/mm]
>  
> Lösungsansatz:
>  
> Es gelten:
>  [mm]cond_\infty(A) = ||A^{-1}||_\infty ||A||_\infty = ||A^{-1}||_\infty = \max_{1 \le i \le n} \{\summe_{j=1}^{n} |a_{ij}^{inv}|\}[/mm]
>  
> und
>  [mm]cond_\infty(DA) = ||A^{-1}D^{-1}||_\infty*\max_{1 \le i \le n} \{|d_{ii}|\} = \max_{1 \le i \le n} \{\bruch{1}{|d_{ii}|}\summe_{j=1}^{n}|a_{ij}^{inv}|\}*\max_{1 \le i \le n} \{|d_{ii}|\}[/mm]
>  

Hier ist imho ein Fehler drin
[mm]cond_\infty(DA) = ||A^{-1}D^{-1}||_\infty*\max_{1 \le i \le n} \{|d_{ii}|\} = \max_{1 \le i \le n} \{\summe_{j=1}^{n}\bruch{|a_{ij}^{inv}|}{|d_{jj}|}\}*\max_{1 \le i \le n} \{|d_{ii}|\}[/mm]
Dies kann man folgendermaßen abschätzen:
[mm]\max_{1 \le i \le n} \{\summe_{j=1}^{n}\bruch{|a_{ij}^{inv}|}{|d_{jj}|}\}*\max_{1 \le i \le n} \{|d_{ii}|\}\ge \max_{1 \le i \le n} \{ \summe_{j=1}^{n}\bruch{|a_{ij}^{inv}|}{\max_{1 \le k \le n}|d_{kk}|}\}*\max_{1 \le i \le n} \{|d_{ii}|\}[/mm]

Alles klar?
gruß
mathemaduenn

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Numerik linearer Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]