matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGeoGebraZeigerkette
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "GeoGebra" - Zeigerkette
Zeigerkette < GeoGebra < Mathe-Software < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "GeoGebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zeigerkette: Verhalten bei Summe(k,k,1,-1)
Status: (Frage) beantwortet Status 
Datum: 14:50 Di 25.05.2021
Autor: Riesenradfahrrad

Hallo!

Ich möchte folgende Folge von Vektoren erzeugen

Vektor((0|0),(1|0))

Vektor((0|0)+(1|0),(1|0)+(cos(1*alpha)|sin(1*alpha)))

Vektor((0|0)+(1|0)+(cos(1*alpha)|sin(1*alpha)),(1|0)+(cos(1*alpha)|sin(1*alpha))+(cos(2*alpha)|sin(2*alpha)))

Vektor((0|0)+(1|0)+(cos(1*alpha)|sin(1*alpha))+(cos(2*alpha)|sin(2*alpha)),(1|0)+(cos(1*alpha)|sin(1*alpha))+(cos(2*alpha)|sin(2*alpha))+(cos(3*alpha)|sin(3*alpha)))

usw.

Nach langem Probieren klappt dies [mm] $\textit{fast}$ [/mm] mit

Folge(Vektor(Summe((cos(alpha t / 360 * 2π), sin(alpha t / 360 * 2π)), t, 0, q - 1), Summe((cos(alpha t / 360 * 2π), sin(alpha t / 360 * 2π)), t, 0, q)), q, 0, l)

[Dateianhang nicht öffentlich]

wobei ich für alpha und l Regler erstelle. Das ganze wird eine Zeigerkette, wie man sie für Interferenzen bei der Quantenmechanik braucht.

Problem: Meine Folge erzeugt den ersten Pfeil nicht. Diesen kann ich natürlich auch manuell hinzufügen. Ich fänds aber schöner, wenn der auch aus der Folge hervorgeht, falls ich mit der gesamten Folge weitere Transformationen vorhabe.

Den Grund habe ich schon entdeckt. GeoGebras Summe-Befehl verhält sich anders als zB der Summen-Befehl von Maple. Dort wäre sum(k,k=0..-1)=0. Bei GeoGebra hingegen Summe(k,k,0,-1)= {} - leer. Dadurch kommt der erst Pfeil mit Startpunkt $(0|0)$ nicht zustande. Weiß jemand Rat, wie man das  repararieren kann?




Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
        
Bezug
Zeigerkette: Antwort
Status: (Antwort) fertig Status 
Datum: 16:30 Di 25.05.2021
Autor: HJKweseleit

Ich kenne mich in der Programmierung von GeoGebra zwar nicht aus, würde aber mal versuchen, mit einem vorhergehenden Schritt (t statt bei 0 bei -1, falls t der Laufindex ist) zu starten. Dann wird zuerst eine Luftnummer gedreht und das Pgm. startet mit dem gewünschten Pfeil.

Bezug
                
Bezug
Zeigerkette: Hinweis
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:51 Di 25.05.2021
Autor: HJKweseleit

In


Folge(Vektor(Summe((cos(alpha t / 360 * 2π), sin(alpha t / 360 * 2π)), t, 0, q - 1), Summe((cos(alpha t / 360 * 2π), sin(alpha t / 360 * 2π)), t, 0, q)), q, 0, l)

kommt mehrfach der konstante Ausdruck (alpha t / 360 * 2π) vor. Um Rechenschritte zu sparen (heutzutage unwichtig) und vor allen Dingen der Übersichtlichkeit wegen solltest du vorher

k=alpha / 360 * 2π setzen, damit der vereinfachte Befehl

Folge(Vektor(Summe((cos(t*k), sin(t*k)), t, 0, q - 1), Summe((cos(t*k), sin(t*k)), t, 0, q)), q, 0, l) lesbarer wird.

Falls mein erster Vorschlag nicht klappt, versuchs mal mit

Folge(Vektor(Summe((cos(t*k-k), sin(t*k-k)), t, 0, q - 1), Summe((cos(t*k-k), sin(t*k-k)), t, 0, q)), q, 0, 5).

Bezug
                        
Bezug
Zeigerkette: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:47 Mi 26.05.2021
Autor: Riesenradfahrrad

Hallo HJKweseleit,

Danke für Deine Antwort. Leider klappen beide Methoden nicht. Alle Pfeile werden dadurch nur verschoben.

alpha/360*2*Pi ist umständlich. Jedoch soll man am Regler direkt den Winkel ablesen. Aber natürlich könnte ich trotzdem das von Dir genannte $k$ definieren und den Regler weiter mit alpha belassen.

Grundsätzlich problematisch ist hier leider, wie schon erwähnt, das Verhalten von GeoGebra bei der Summe. Dies steht im Widerspruch zur Summendefinition bei Wikipedia https://de.wikipedia.org/wiki/Summe
unter "Besondere Summen" zweiter Absatz. Wenn man dies "korrigieren" könnte, so wäre mein Problem gelöst. Durch Ändern der Argumente in Sinus und Cosinus gleichzeitig erhalte ich wohl nie $(0|0)$...:-/

Bezug
                                
Bezug
Zeigerkette: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:01 Mi 26.05.2021
Autor: Fulla

Hallo Riesenfahrrad,

ich habe deinen Code mal in GeoGebra kopiert und erhalte dasselbe Ergebnis.
Es scheint aber so, als wäre der erste Vektor vom Ursprung nach (1,0) verschoben.

Welcher Pfeil fehlt dir denn? Von (0,0) nach (1,0)?
In meinen Augen ist das schon alles korrekt, du bekommst $l+1$ Punkte und $l$ Vektoren, die jeweils zwei davon verbinden.
(0,0) ist bei mir übrigens schon Teil der Folge...

Kann es sein, dass bei den Summen irgendwo kein Vektor, sondern das Skalar "1" rauskommt und das die Verschiebung entlang der x-Achse verursacht?

Lieben Gruß
Fulla

Bezug
                                        
Bezug
Zeigerkette: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:06 Fr 28.05.2021
Autor: Riesenradfahrrad

Hallo Fulla,

danke auch für Deine Beteiligung.
Leider ist es keine Verschiebung, es fehlt tatsächlich der Pfeil von (0,0) nach (1,0).


Bezug
                                
Bezug
Zeigerkette: Antwort
Status: (Antwort) fertig Status 
Datum: 23:08 Mi 26.05.2021
Autor: HJKweseleit

Hier noch ein weiterer Vorschlag:


Folge(Vektor(Summe((cos(t*k-k), sin(t*k-k)), t, 0, q - 1), Summe((cos(t*k-k), sin(t*k-k)), t, 0, q)), q, 1, 5).

Dadurch wird vermieden, dass t von 0 bis 0-1=-1 , stattdessen von 0 bis 0 läuft. Evtl musst du das grüne -k wieder löschen.

Bezug
        
Bezug
Zeigerkette: So klappts.
Status: (Antwort) fertig Status 
Datum: 19:57 Do 27.05.2021
Autor: HJKweseleit

Hab mal einen kleinen Lehrgang in GeoGebra absolviert. Frag mich nicht, wieso das jetzt klappt... Reine Fummelarbeit.


[Dateianhang nicht öffentlich]

Dateianhänge:
Anhang Nr. 1 (Typ: JPG) [nicht öffentlich]
Bezug
                
Bezug
Zeigerkette: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:48 Fr 28.05.2021
Autor: Riesenradfahrrad

Wunderbar!
Ich versuche das mal zu verstehen: Wenn wir Deinen Korrektursummanden zunächst weglassen, so lässt Du die Pfeile wie folgt starten
[mm] $=Vektor(\left(\cos(30^\circ \cdot 0\textcolor{red}{-30^\circ})|\sin(30^\circ \cdot 0\textcolor{red}{-30^\circ})\right)\;,\;\left(\cos(30^\circ \cdot 0\textcolor{red}{-30^\circ})|\sin(30^\circ \cdot 0\textcolor{red}{-30^\circ})\right)+\left(\cos(30^\circ \cdot 1\textcolor{red}{-30^\circ})|\sin(30^\circ \cdot 1\textcolor{red}{-30^\circ})\right)$ [/mm]

[mm] $=Vektor(\left(\cos(\textcolor{red}{-30^\circ})|\sin(\textcolor{red}{-30^\circ})\right)\;,\;\left(\cos(\textcolor{red}{-30^\circ})|\sin(\textcolor{red}{-30^\circ})\right)+(\cos(30^\circ \cdot 1\textcolor{red}{-30^\circ})|\sin(30^\circ \cdot 1\textcolor{red}{-30^\circ}))$ [/mm]
Deine [mm] $\textcolor{red}{-30^\circ}$ [/mm] bewirken zunächst mal, dass wir als Startpunkt eine Ort haben, wo die Pfeilspitze eines [mm] "$-\alpha$-Pfeils" [/mm] liegen würde.
Mit Deinem Korrektursummanden [mm] $\left(\cos(-30^\circ)|1-\sin(30^\circ)\right)$ [/mm] schiebst Du den Startpunkt an den Ort x = 0 und die y-Koordinate nach 1, und/aber drehst sie um weitere [mm] $\alpha$ [/mm] zurück. Dies ergibt jedoch nur y = 0, wenn [mm] $1-2\cdot\sin(\alpha)=0$. [/mm] Ich befürchte, diese Methode klappt nur für [mm] $\alpha=30^\circ$... [/mm]
(Aber vielleicht kann man an der "1" noch schrauben, ich denke später mal drüber nach)

Bezug
                        
Bezug
Zeigerkette: Ja. Aber jetzt:
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:25 Sa 29.05.2021
Autor: HJKweseleit

Du hast Recht. Man soll nicht fummeln, sondern denken, aber ich hatte so schon Probleme mit den vielen Klammern und war daher froh, dass es überhaupt klappte. Jetzt aber richtig:

Folge(Vektor(Summe((cos(a*t-a),sin(a*t-a)),t,0,q)+(-cos(a),sin(a)),Summe((cos(a*t-a),sin(a*t-a)),t,0,q+1)+(-cos(a),sin(a))),q,0,5)

So klappt es für alle Winkel a. Der Korrekturterm 1-sin(30°) klappt wirklich nur für 30°, weil das 1-1/2=1/2 =sin(30°) ist. Bei anderen Winkeln wandert der Ausgangspfeil rauf und runter. Der neue Term funktioniert aber wunderbar.

Eigentlich müsste der Korrekturterm (-cos(-a),-sin(-a)) lauten, lässt sich aber zu (-cos(a),sin(a)) vereinfachen wg. der Symmetrieeigenschaften von sin und cos.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "GeoGebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]