Zeigen, dass Aussage gilt < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 14:58 Di 26.02.2008 | Autor: | RalU |
Aufgabe | Hallo!
Es geht um folgende Aufgabe:
Zeigen Sie, dass [mm] \IN \cap [/mm] {x| x [mm] \in \IR \wedge x^{2}>10 [/mm] } [mm] \subseteq [/mm] {x|x [mm] \in \IN \wedge [/mm] x > 3} |
zunächst will ich zeigen, dass {x| x [mm] \in \IR \wedge x^{2}>10 [/mm] } [mm] \subseteq [/mm] {x|x [mm] \in \IN \wedge [/mm] x > 3} gilt.
{x| x [mm] \in \IR \wedge x^{2}>10 [/mm] } bezeichne ich mit A.
{x|x [mm] \in \IN \wedge [/mm] x > 3} bezeichne ich mit B.
Es muss also gelten:
x [mm] \in [/mm] A [mm] \Rightarrow [/mm] x [mm] \in [/mm] B
In A steht ja: x [mm] \in \IR [/mm] und [mm] x^{2}>10
[/mm]
Wenn ich jetzt die Wurzel ziehe und den positiven Teil betrachte steht dann da:
x [mm] \in \IR [/mm] und [mm] x>\wurzel{10}
[/mm]
und in B steht ja:
x [mm] \in \IN [/mm] und x>3
Wenn x [mm] >\wurzel{10} [/mm] dann ist x > 3. Also gilt x [mm] \in [/mm] A [mm] \Rightarrow [/mm] x [mm] \in [/mm] B
Aber wie geht's jetzt weiter?
Die Menge der natürlichen Zahlen [mm] \IN [/mm] beinhaltet natürlich alle natürlichen Zahlen, die >3 sind, also die die in der Menge {x| x [mm] \in \IR \wedge x^{2}>10 [/mm] } [mm] \subseteq [/mm] {x|x [mm] \in \IN \wedge [/mm] x > 3} enthalten sind.
Was bringt mir aber diese Erkenntnis, um fortzufahren?
Wer kann mir da helfen?
Gruß, Ralf
|
|
|
|
Hallo Ralf,
Dein Anfang ist nicht richtig. Es gilt nämlich nicht $ [mm] \{ x | x \in \IR \wedge x^{2}>10 \} \subseteq \{ x | x \in \IN \wedge x>3 \}$. [/mm] Betrachte das Gegenbeispiel x=-4: -4 ist in der linksstehenden Menge enthalten, jedoch nicht in der rechten.
Aus dem gleichen Grund stimmt auch Deine letzte Erkenntnis nicht.
Wenn Du jedoch die linksstehende Menge noch mit $ [mm] \IN [/mm] $ schneidest, dann verbleiben nur die natürlichen Zahlen x mit $ [mm] x^2 [/mm] > 10$, damit kannst Du dann ähnlich vorgehen, also wie Du vorhattest, zeigen: [mm] $\forall x\in [/mm] A$ gilt [mm] $x\in [/mm] B$.
Viele Grüße,
Stefan
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 15:23 Di 26.02.2008 | Autor: | Stefan_K |
Ein Nachtrag zu meinem letzten Satz: ich hab nochmal auf Deine Bezeichnungen geschaut, es ist natürlich zu zeigen: $ [mm] \forall x\in \IN\cap [/mm] A $ gilt $ [mm] x\in [/mm] B$. Es gilt nämlich nicht $A [mm] \subseteq [/mm] B$, es gilt nicht [mm] $x\in [/mm] A [mm] \implies x\in [/mm] B$.
Stefan
|
|
|
|