matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenZeige Monotonie
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Folgen und Reihen" - Zeige Monotonie
Zeige Monotonie < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zeige Monotonie: Tipp
Status: (Frage) beantwortet Status 
Datum: 15:04 Mi 17.05.2006
Autor: EasyLee

Aufgabe
Untersuche [mm] a_n=\bruch{n^2+1}{n} [/mm] auf Monotonie

Hallöle!

Wie zeigt man [mm] a_n \le a_{n+1}. [/mm]
Hab zwar nen leichten Verdacht, aber wäre nett wenn jemand was sagt.

Gruß und Dank
EasyLee


        
Bezug
Zeige Monotonie: einsetzen und umformen
Status: (Antwort) fertig Status 
Datum: 15:16 Mi 17.05.2006
Autor: Roadrunner

Hallo EasyLee!


Setze in diese Ungleichung ein: [mm] $a_n [/mm] \ = \ [mm] \bruch{n^2+1}{n}$ [/mm]  sowie  [mm] $a_{\blue{n+1}} [/mm] \ = \ [mm] \bruch{(\blue{n+1})^2+1}{\blue{n+1}} [/mm] \ = \ [mm] \bruch{n^2+2n+2}{n+1}$ [/mm] .

Damit haben wir also:

[mm] $\bruch{n^2+1}{n} [/mm] \ [mm] \le [/mm] \ [mm] \bruch{n^2+2n+2}{n+1}$ [/mm]


Und nun solange umformen und zusammenfassen bis Du eine wahre Aussage erhältst.


Gruß vom
Roadrunner


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]