matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikZeige Martingal
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Stochastik" - Zeige Martingal
Zeige Martingal < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zeige Martingal: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:08 Di 27.01.2009
Autor: harness

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Ich habe Probleme beim zeigen eines Martingals.
Also ich soll zeigen dass [mm] X_{t} [/mm] ein Martingal ist.

[mm] X_{t}=\sum_{j=1}^{t} (Y_{j})^{2}-t [/mm] und [mm] \mathbb E(Y_{1})=0,Var(Y_{1})=1 [/mm]

zu zeigen ist also

[mm] \mathbb E(X_{t+1}|\mathbb F_{t})=X_{t} [/mm]

Also

[mm] \mathbb E(X_{t+1}|\mathbb F_{t})=\mathbb E(\sum_{j=1}^{t} (Y_{j})^{2}+Y_{t+1}-(t+1)|\mathbb F_{t}) [/mm]

Die Summe kann ich doch jetzt rausziehen, da sie [mm] \mathbb F_{t}-messbar [/mm] ist oder? Aber irgendwie hab ich grad ein Brett vorm Kopp wie es weitergeht. Kann mir jemand grad helfen?




        
Bezug
Zeige Martingal: Antwort
Status: (Antwort) fertig Status 
Datum: 20:30 Di 27.01.2009
Autor: Blech

Hallo,

> [mm]\mathbb E(X_{t+1}|\mathbb F_{t})=\mathbb E(\sum_{j=1}^{t} (Y_{j})^{2}+Y_{t+1}-(t+1)|\mathbb F_{t})[/mm]
>  
> Die Summe kann ich doch jetzt rausziehen, da sie [mm]\mathbb F_{t}-messbar[/mm] ist oder?

Du hast nirgends was näheres über [mm] $Y_t$ [/mm] gesagt, aber ich nehm mal an ja. Das muß übrigens [mm] $Y_{t+1}^2$ [/mm] sein, nicht [mm] $Y_t^2$, [/mm] Tippfehler.

> Aber irgendwie hab ich grad ein Brett vorm Kopp
> wie es weitergeht. Kann mir jemand grad helfen?

Wenn ich auch noch annehmen darf, daß [mm] $Y_{t+1}$ [/mm] unabhängig von [mm] $\mathcal{F}_t$ [/mm] ist, dann ist
[mm] $E(Y_{t+1}^2|\mathcal{F}_t)=E(Y_{t+1}^2)=1$ [/mm]

Die 1 kürzt sich also weg und wir sind fertig.

ciao
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]