Zahlkörper Grad 5 < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 15:28 Sa 23.10.2010 | Autor: | Arcesius |
Hallo Zusammen. Ich habe eine Aufgabe mit 5 Teilaufgaben. 4 davon hab ich gelöst, also hab ich folgende Resultate:
(i) P = [mm] T^{5}-T+1 \in \mathbb{Q}\left[T\right]$ [/mm] ist irreduzibel.
Das hab ich modulo 3 angeschaut, das gibt mir doch [mm] $T^{5}+2T+1 \in \mathbb{F}_{3}$, [/mm] was da keine Nullstellen hat. Richtig?
(ii) Mit $K = [mm] \mathbb{Q}(\alpha)$, $\alpha$ [/mm] Nullstelle von $P$ hab ich [mm] $\triangle_{K/\mathbb{Q}}(1,\alpha,\alpha^{2},\alpha^{3},\alpha^{4}) [/mm] = 2869$. Kann das vielleicht jemand überprüfen?
(iii) Damit kriege ich $2869 = [mm] 19\cdot [/mm] 151$ und somit gilt [mm] $\left[\mathbb{Z}_{K}:\mathbb{Z}\left[\alpha\right]\right]^{2} [/mm] = 1 [mm] \Rightarrow \left[\mathbb{Z}_{K}:\mathbb{Z}\left[\alpha\right]\right] [/mm] = 1$ und somit gilt [mm] $\mathbb{Z}_{K}=\mathbb{Z}\left[\alpha\right]$
[/mm]
(iv) Ich hab noch gezeigt, dass [mm] $\alpha$ [/mm] und [mm] $1+\alpha$ [/mm] Einheiten sind.
Ok.. so jetzt zur letzten Teilaufgabe.. ich soll:
(v) Bestimme den Rang der von [mm] $\alpha$ [/mm] und [mm] $1+\alpha$ [/mm] erzeugten Untergruppe von [mm] $\mathbb{Z}_{K}^{\times}$
[/mm]
Nachdem ich [mm] $\alpha^{13}$ [/mm] ausgerechnet hatte wurde mir klar, dass es eine bessere Lösung geben muss als die Ordnung der Elemente nach "brute force" zu finden.. Jedoch will mir nicht einfallen was ich hier machen könnte.. kann jemand helfen? :)
Grüsse, Amaro
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 03:01 So 24.10.2010 | Autor: | felixf |
Moin Amaro!
> Hallo Zusammen. Ich habe eine Aufgabe mit 5 Teilaufgaben. 4
> davon hab ich gelöst, also hab ich folgende Resultate:
>
> (i) P = [mm]T^{5}-T+1 \in \mathbb{Q}\left[T\right]$[/mm] ist
> irreduzibel.
> Das hab ich modulo 3 angeschaut, das gibt mir doch
> [mm]T^{5}+2T+1 \in \mathbb{F}_{3}[/mm], was da keine Nullstellen
> hat. Richtig?
> (ii) Mit [mm]K = \mathbb{Q}(\alpha)[/mm], [mm]\alpha[/mm] Nullstelle von [mm]P[/mm]
> hab ich
> [mm]\triangle_{K/\mathbb{Q}}(1,\alpha,\alpha^{2},\alpha^{3},\alpha^{4}) = 2869[/mm].
> Kann das vielleicht jemand überprüfen?
Magma bestaetigt dies.
> (iii) Damit kriege ich [mm]2869 = 19\cdot 151[/mm]
> und somit gilt
> [mm]\left[\mathbb{Z}_{K}:\mathbb{Z}\left[\alpha\right]\right]^{2} = 1 \Rightarrow \left[\mathbb{Z}_{K}:\mathbb{Z}\left[\alpha\right]\right] = 1[/mm]
> und somit gilt
> [mm]\mathbb{Z}_{K}=\mathbb{Z}\left[\alpha\right][/mm]
> (iv) Ich hab noch gezeigt, dass [mm]\alpha[/mm] und [mm]1+\alpha[/mm]
> Einheiten sind.
Laut Magma haben die Minimalpolynome jeweils konstanten Term [mm] $\pm [/mm] 1$ (also Norm [mm] $\pm [/mm] 1$) und sind somit Einheiten.
> Ok.. so jetzt zur letzten Teilaufgabe.. ich soll:
>
> (v) Bestimme den Rang der von [mm]\alpha[/mm] und [mm]1+\alpha[/mm] erzeugten
> Untergruppe von [mm]\mathbb{Z}_{K}^{\times}[/mm]
>
> Nachdem ich [mm]\alpha^{13}[/mm] ausgerechnet hatte wurde mir klar,
> dass es eine bessere Lösung geben muss als die Ordnung der
> Elemente nach "brute force" zu finden.. Jedoch will mir
> nicht einfallen was ich hier machen könnte.. kann jemand
> helfen? :)
Wie du vermutlich schon bemerkt hast: [mm] $\alpha$ [/mm] hat keine endliche Ordnung. (Andernfalls waer es eine Einheitswurzel.) Damit muss [mm] $\langle \alpha, [/mm] 1 + [mm] \alpha \rangle$ [/mm] schonmal Rang [mm] $\ge [/mm] 1$ haben. Es kann hoechstens Rang 2 haben.
Die Frage ist jetzt also: Rang 1 oder 2?
Kennst du die logarithmische Minkowski-Einbettung? Die braucht man z.B. um den Dirichletschen Einheitensatz zu zeigen. Wenn [mm] $\sigma_1, \dots, \sigma_n [/mm] : K [mm] \to \IC$ [/mm] alle Einbettungen von $K$ in [mm] $\IC$ [/mm] sind (bis auf komplexe Konjugation, d.h. wir lassen die weg die schon in komplex konjugierter Form vorkommen), dann kannst du $L : [mm] K^\ast \to \IR^n$, [/mm] $x [mm] \mapsto (\log |\sigma_1(x)|, \dots, \log |\sigma_n(x)|)$ [/mm] betrachten. Dies ist ein Gruppenhomomorphismus, der die endlich erzeugte abelsche Gruppe [mm] $\mathcal{O}_K^\ast$ [/mm] auf ein Gitter von Rang $n - 1$ (dem Einheitenrang) abbildet. Der Kern von [mm] $L|_{\mathcal{O}_K^\ast}$ [/mm] sind gerade die Einheitswurzeln.
Du kannst jetzt numerisch etwa die Nullstellen $a [mm] \approx [/mm] -1.167303978$ und $b [mm] \approx [/mm] -0.1812324445 - 1.083954101 i$ bestimmen (etwa mit Maple). Wenn [mm] $\sigma_1(\alpha) \approx [/mm] a$ und [mm] $\sigma_2(\alpha) \approx [/mm] b$ ist, dann ist [mm] $L(\alpha) \approx [/mm] (0.1546967975, 0.09440096205, [mm] \dots)$ [/mm] und $L(1 - [mm] \alpha) \approx [/mm] (0.7734839887, 0.4720048105, [mm] \dots)$.
[/mm]
Daraus kann man schon sofort erkennen, dass diese beiden Vektoren linear unabhaengig sind (auch wenn es nur Approximationen sind, so ist der Fehler dafuer klein genug). Damit hat das Bild von [mm] $\langle \alpha, [/mm] 1 - [mm] \alpha \rangle$ [/mm] unter $L$ Rang 2, womit [mm] $\langle \alpha, [/mm] 1 - [mm] \alpha \rangle$ [/mm] selber auch Rang 2 hat.
LG Felix
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 09:49 So 24.10.2010 | Autor: | Arcesius |
Hey Felix
> Moin Amaro!
>
> > Hallo Zusammen. Ich habe eine Aufgabe mit 5 Teilaufgaben. 4
> > davon hab ich gelöst, also hab ich folgende Resultate:
> >
> > (i) P = [mm]T^{5}-T+1 \in \mathbb{Q}\left[T\right]$[/mm] ist
> > irreduzibel.
> > Das hab ich modulo 3 angeschaut, das gibt mir doch
> > [mm]T^{5}+2T+1 \in \mathbb{F}_{3}[/mm], was da keine Nullstellen
> > hat. Richtig?
>
>
>
> > (ii) Mit [mm]K = \mathbb{Q}(\alpha)[/mm], [mm]\alpha[/mm] Nullstelle von [mm]P[/mm]
> > hab ich
> >
> [mm]\triangle_{K/\mathbb{Q}}(1,\alpha,\alpha^{2},\alpha^{3},\alpha^{4}) = 2869[/mm].
> > Kann das vielleicht jemand überprüfen?
>
> Magma bestaetigt dies.
>
> > (iii) Damit kriege ich [mm]2869 = 19\cdot 151[/mm]
>
>
>
> > und somit gilt
> >
> [mm]\left[\mathbb{Z}_{K}:\mathbb{Z}\left[\alpha\right]\right]^{2} = 1 \Rightarrow \left[\mathbb{Z}_{K}:\mathbb{Z}\left[\alpha\right]\right] = 1[/mm]
> > und somit gilt
> > [mm]\mathbb{Z}_{K}=\mathbb{Z}\left[\alpha\right][/mm]
>
>
>
> > (iv) Ich hab noch gezeigt, dass [mm]\alpha[/mm] und [mm]1+\alpha[/mm]
> > Einheiten sind.
>
> Laut Magma haben die Minimalpolynome jeweils konstanten
> Term [mm]\pm 1[/mm] (also Norm [mm]\pm 1[/mm]) und sind somit Einheiten.
>
Gut danke fürs überprüfen.. Magma ist halt schon ne praktische Sache (sollts endlich mal lernen ^^)
> > Ok.. so jetzt zur letzten Teilaufgabe.. ich soll:
> >
> > (v) Bestimme den Rang der von [mm]\alpha[/mm] und [mm]1+\alpha[/mm] erzeugten
> > Untergruppe von [mm]\mathbb{Z}_{K}^{\times}[/mm]
> >
> > Nachdem ich [mm]\alpha^{13}[/mm] ausgerechnet hatte wurde mir klar,
> > dass es eine bessere Lösung geben muss als die Ordnung der
> > Elemente nach "brute force" zu finden.. Jedoch will mir
> > nicht einfallen was ich hier machen könnte.. kann jemand
> > helfen? :)
>
> Wie du vermutlich schon bemerkt hast: [mm]\alpha[/mm] hat keine
> endliche Ordnung. (Andernfalls waer es eine
> Einheitswurzel.) Damit muss [mm]\langle \alpha, 1 + \alpha \rangle[/mm]
> schonmal Rang [mm]\ge 1[/mm] haben. Es kann hoechstens Rang 2
> haben.
>
> Die Frage ist jetzt also: Rang 1 oder 2?
>
> Kennst du die logarithmische Minkowski-Einbettung? Die
> braucht man z.B. um den Dirichletschen Einheitensatz zu
> zeigen.
Ich hab letztes Jahr in ner Vorlesung den Beweis gesehen, somit kenne ich diese Einbettung, jedoch eben nur als Hilfsmittel für diesen Beweis.
>Wenn [mm]\sigma_1, \dots, \sigma_n : K \to \IC[/mm] alle
> Einbettungen von [mm]K[/mm] in [mm]\IC[/mm] sind (bis auf komplexe
> Konjugation, d.h. wir lassen die weg die schon in komplex
> konjugierter Form vorkommen), dann kannst du [mm]L : K^\ast \to \IR^n[/mm],
> [mm]x \mapsto (\log |\sigma_1(x)|, \dots, \log |\sigma_n(x)|)[/mm]
> betrachten. Dies ist ein Gruppenhomomorphismus, der die
> endlich erzeugte abelsche Gruppe [mm]\mathcal{O}_K^\ast[/mm] auf ein
> Gitter von Rang [mm]n - 1[/mm] (dem Einheitenrang) abbildet. Der
> Kern von [mm]L|_{\mathcal{O}_K^\ast}[/mm] sind gerade die
> Einheitswurzeln.
>
> Du kannst jetzt numerisch etwa die Nullstellen [mm]a \approx -1.167303978[/mm]
> und [mm]b \approx -0.1812324445 - 1.083954101 i[/mm] bestimmen (etwa
> mit Maple). Wenn [mm]\sigma_1(\alpha) \approx a[/mm] und
> [mm]\sigma_2(\alpha) \approx b[/mm] ist, dann ist [mm]L(\alpha) \approx (0.1546967975, 0.09440096205, \dots)[/mm]
> und [mm]L(1 - \alpha) \approx (0.7734839887, 0.4720048105, \dots)[/mm].
>
> Daraus kann man schon sofort erkennen, dass diese beiden
> Vektoren linear unabhaengig sind (auch wenn es nur
> Approximationen sind, so ist der Fehler dafuer klein
> genug). Damit hat das Bild von [mm]\langle \alpha, 1 - \alpha \rangle[/mm]
> unter [mm]L[/mm] Rang 2, womit [mm]\langle \alpha, 1 - \alpha \rangle[/mm]
> selber auch Rang 2 hat.
Hmm.. also ich seh schon.. aber ich bin nicht ganz sicher, ob ich damit arbeiten darf, denn wir werden den Satz wohl erst in ein paar Wochen sehen in der jetzigen Vorlesung...
Aber ist auch ne Zusatzteilaufgabe.. vielleicht eben darum, weil sie den Satz voraussetzt?
Auf jeden Fall, danke nochmals.. Kann ich nur immer und immer wieder sagen!
>
> LG Felix
>
Grüsse, Amaro
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 19:21 So 24.10.2010 | Autor: | felixf |
Moin!
> > > (iv) Ich hab noch gezeigt, dass [mm]\alpha[/mm] und [mm]1+\alpha[/mm]
> > > Einheiten sind.
> >
> > Laut Magma haben die Minimalpolynome jeweils konstanten
> > Term [mm]\pm 1[/mm] (also Norm [mm]\pm 1[/mm]) und sind somit Einheiten.
> >
>
> Gut danke fürs überprüfen.. Magma ist halt schon ne
> praktische Sache (sollts endlich mal lernen ^^)
Hierfuer reicht:
1: | R<T> := PolynomialRing(Rationals());
| 2: | K<alpha> := NumberField(T^5 - T + 1);
| 3: | Discriminant(K); |
Beachte, dass Discriminant(K) die Diskriminante von $1, [mm] \alpha, \alpha^2, \dots, \alpha^4$ [/mm] berechnet und nicht die von [mm] $\mathcal{O}_K$. [/mm] Um die zu berechnen, muss man wie folgt vorgehen, wenn ich mich richtig erinnere:
1: | O := MaximalOrder(K);
| 2: | Discriminant(O); |
> > > Ok.. so jetzt zur letzten Teilaufgabe.. ich soll:
> > >
> > > (v) Bestimme den Rang der von [mm]\alpha[/mm] und [mm]1+\alpha[/mm] erzeugten
> > > Untergruppe von [mm]\mathbb{Z}_{K}^{\times}[/mm]
> > >
> > > Nachdem ich [mm]\alpha^{13}[/mm] ausgerechnet hatte wurde mir klar,
> > > dass es eine bessere Lösung geben muss als die Ordnung der
> > > Elemente nach "brute force" zu finden.. Jedoch will mir
> > > nicht einfallen was ich hier machen könnte.. kann jemand
> > > helfen? :)
> >
> > Wie du vermutlich schon bemerkt hast: [mm]\alpha[/mm] hat keine
> > endliche Ordnung. (Andernfalls waer es eine
> > Einheitswurzel.) Damit muss [mm]\langle \alpha, 1 + \alpha \rangle[/mm]
> > schonmal Rang [mm]\ge 1[/mm] haben. Es kann hoechstens Rang 2
> > haben.
> >
> > Die Frage ist jetzt also: Rang 1 oder 2?
> >
> > Kennst du die logarithmische Minkowski-Einbettung? Die
> > braucht man z.B. um den Dirichletschen Einheitensatz zu
> > zeigen.
>
> Ich hab letztes Jahr in ner Vorlesung den Beweis gesehen,
> somit kenne ich diese Einbettung, jedoch eben nur als
> Hilfsmittel für diesen Beweis.
Ah ok.
> >Wenn [mm]\sigma_1, \dots, \sigma_n : K \to \IC[/mm] alle
> > Einbettungen von [mm]K[/mm] in [mm]\IC[/mm] sind (bis auf komplexe
> > Konjugation, d.h. wir lassen die weg die schon in komplex
> > konjugierter Form vorkommen), dann kannst du [mm]L : K^\ast \to \IR^n[/mm],
> > [mm]x \mapsto (\log |\sigma_1(x)|, \dots, \log |\sigma_n(x)|)[/mm]
> > betrachten. Dies ist ein Gruppenhomomorphismus, der die
> > endlich erzeugte abelsche Gruppe [mm]\mathcal{O}_K^\ast[/mm] auf ein
> > Gitter von Rang [mm]n - 1[/mm] (dem Einheitenrang) abbildet. Der
> > Kern von [mm]L|_{\mathcal{O}_K^\ast}[/mm] sind gerade die
> > Einheitswurzeln.
> >
> > Du kannst jetzt numerisch etwa die Nullstellen [mm]a \approx -1.167303978[/mm]
> > und [mm]b \approx -0.1812324445 - 1.083954101 i[/mm] bestimmen (etwa
> > mit Maple). Wenn [mm]\sigma_1(\alpha) \approx a[/mm] und
> > [mm]\sigma_2(\alpha) \approx b[/mm] ist, dann ist [mm]L(\alpha) \approx (0.1546967975, 0.09440096205, \dots)[/mm]
> > und [mm]L(1 - \alpha) \approx (0.7734839887, 0.4720048105, \dots)[/mm].
>
> >
> > Daraus kann man schon sofort erkennen, dass diese beiden
> > Vektoren linear unabhaengig sind (auch wenn es nur
> > Approximationen sind, so ist der Fehler dafuer klein
> > genug). Damit hat das Bild von [mm]\langle \alpha, 1 - \alpha \rangle[/mm]
> > unter [mm]L[/mm] Rang 2, womit [mm]\langle \alpha, 1 - \alpha \rangle[/mm]
> > selber auch Rang 2 hat.
>
> Hmm.. also ich seh schon.. aber ich bin nicht ganz sicher,
> ob ich damit arbeiten darf, denn wir werden den Satz wohl
> erst in ein paar Wochen sehen in der jetzigen Vorlesung...
> Aber ist auch ne Zusatzteilaufgabe.. vielleicht eben darum,
> weil sie den Satz voraussetzt?
Man muss den Satz nicht kennen. Es reicht, dass man die Idee bekommt, sich etwas wie diese Abbildung $L$ anzuschauen, bzw. Teile davon :)
Vermutlich ist sie deswegen Zusatz, weil man nicht erwarten kann dass jemand "einfach so" auf die Idee kommt.
LG Felix
|
|
|
|