matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisWurzel aus i
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Komplexe Analysis" - Wurzel aus i
Wurzel aus i < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wurzel aus i: Ergebnisse gesucht
Status: (Frage) beantwortet Status 
Datum: 17:55 Sa 29.11.2008
Autor: RudiBe

Aufgabe
Ermitteln Sie die 3 Lösungen der Gleichung

[mm] \wurzel[3]{8i} [/mm]

und die 2 Lösungen der Gleichung

[mm] \wurzel[2]{1+i} [/mm]

nun hier mein Lösungsweg:

[mm] \wurzel[3]{8i}=\wurzel[3]{8*e^{i*\bruch{\pi}{2}}}=\wurzel[3]{8}*e^{i*({\bruch{\bruch{\pi}{2}+2k{\pi}}{3}})} [/mm]

k={0,1,2}

somit Lösung 1: [mm] 2*e^{i{\bruch{\pi}{6}}} [/mm]
Lösung 2: [mm] 2*e^{i{\bruch{5\pi}{6}}} [/mm]
und Lösung 3: [mm] 2*e^{i{\bruch{4\pi}{3}}} [/mm]

hier die Lösungen der zweiten Aufgabe:

[mm] \wurzel[2]{1+i}=\wurzel[2]{1+e^{i*\bruch{\pi}{2}}}=\wurzel[2]{1+e^{i*({\bruch{\pi}{2}+2k{\pi}}})} [/mm]

K={0,1}

Lösung 1: [mm] \wurzel[2]{1+e^{i*\bruch{\pi}{2}}}=\wurzel[2]{1+i} [/mm]
Lösung 2: [mm] \wurzel[2]{1+e^{i*({\bruch{\pi}{2}+2{\pi}})}}=\wurzel[2]{1+i*e^{\pi}{2}} [/mm]

nun meine Frage, kann das soweit stimmen? und wie komme ich jetzte auf die Darstellungsform ohne e?


PS: diese Frage steht in keinem anderen Forum
Danke

        
Bezug
Wurzel aus i: Antwort
Status: (Antwort) fertig Status 
Datum: 18:50 Sa 29.11.2008
Autor: konfuzius


> Ermitteln Sie die 3 Lösungen der Gleichung
>  
> [mm]\wurzel[3]{8i}[/mm]
>  
> und die 2 Lösungen der Gleichung
>  
> [mm]\wurzel[2]{1+i}[/mm]
>  nun hier mein Lösungsweg:
>  
> [mm]\wurzel[3]{8i}=\wurzel[3]{8*e^{i*\bruch{\pi}{2}}}=\wurzel[3]{8}*e^{i*({\bruch{\bruch{\pi}{2}+2k{\pi}}{3}})}[/mm]
>  
> k={0,1,2}
>  
> somit Lösung 1: [mm]2*e^{i{\bruch{\pi}{6}}}[/mm]
>  Lösung 2: [mm]2*e^{i{\bruch{5\pi}{6}}}[/mm]
>  und Lösung 3: [mm]2*e^{i{\bruch{4\pi}{3}}}[/mm]

Stimmt!

> hier die Lösungen der zweiten Aufgabe:
>  
> [mm]\wurzel[2]{1+i}=\wurzel[2]{1+e^{i*\bruch{\pi}{2}}}=\wurzel[2]{1+e^{i*({\bruch{\pi}{2}+2k{\pi}}})}[/mm]
>  
> K={0,1}
>  
> Lösung 1:
> [mm]\wurzel[2]{1+e^{i*\bruch{\pi}{2}}}=\wurzel[2]{1+i}[/mm]
>  Lösung 2:
> [mm]\wurzel[2]{1+e^{i*({\bruch{\pi}{2}+2{\pi}})}}=\wurzel[2]{1+i*e^{\pi}{2}}[/mm]

Nein.
[mm] \sqrt{a+b}\neq\sqrt{a}+\sqrt{b}! [/mm] Quadriere doch mal deine Lösung. Lösung 2 quadriert ergibt ja [mm] 1+e^{\pi/2}i, [/mm] das ist sicher nicht 1+i, oder? Und Lösung 1 ist ja die Aufgabe und keine Lösung.
Ich würde geometrisch rangehen. Kennst du die Erklärung der Multiplikation in [mm] \IC? [/mm] Eine Drehstreckung? Beim Quadrieren werden die Winkel verdoppelt und die Beträge multipliziert. Umgekehrt beim Wurzelziehen der Winkel halbiert (bzw um eine gewisse Periode verschoben die zweite Lösung) und der Betrag "gewurzelt". Hilft dir das?

>  
> nun meine Frage, kann das soweit stimmen? und wie komme ich
> jetzte auf die Darstellungsform ohne e?

Zum Beispiel über [mm] e^{ix}=Cos(x)+i*Sin(x) [/mm]

>
> PS: diese Frage steht in keinem anderen Forum
>  Danke


Bezug
                
Bezug
Wurzel aus i: Wie jetzt?
Status: (Frage) beantwortet Status 
Datum: 16:01 So 30.11.2008
Autor: RudiBe

Danke für die freundliche Hilfe Herr konfuzius.
Aber wo habe ich bei Aufgabe 2 [mm] \wurzel{a} [/mm] + [mm] \wurzel{b} [/mm] geschrieben?
Ich kanns nicht finden. Genau weil das nicht geht hab ich die ganze Sache unter der Wurzel gelassen!!
Nur hatten wir in der Akademie noch kein Beispiel der Art [mm] \wurzel{1+i}, [/mm] dem zur Folge auch keinen korrekten Lösungsansatz.
Abgesehen davon hat mir der Fomeleditor bei Lösung 2 einen Streich gespielt und [mm] e^{\pi}2 [/mm] ausgegeben statt [mm] e^{2\pi}. [/mm]
Den Rest mit Drehstreckung und so kenne ich auch noch nicht, ist also keine Hilfe. Klar würde mir eine Lösung reichen und zu der rechne ich 180° hinzu und hab die zweite. Aber erst mal eine haben.
Somit kann ich die Aufgabe in die Ecke werfen.


Bezug
                        
Bezug
Wurzel aus i: Antwort
Status: (Antwort) fertig Status 
Datum: 16:18 So 30.11.2008
Autor: rainerS

Hallo!

>  Aber wo habe ich bei Aufgabe 2 [mm]\wurzel{a}[/mm] + [mm]\wurzel{b}[/mm]
> geschrieben?

Das war wohl ein Missverständnis.

> Ich kanns nicht finden. Genau weil das nicht geht hab ich
> die ganze Sache unter der Wurzel gelassen!!

Ja, aber dadurch komsmt du noch nicht auf die Lösung.

>  Nur hatten wir in der Akademie noch kein Beispiel der Art
> [mm]\wurzel{1+i},[/mm] dem zur Folge auch keinen korrekten
> Lösungsansatz.
>  Abgesehen davon hat mir der Fomeleditor bei Lösung 2 einen
> Streich gespielt und [mm]e^{\pi}2[/mm] ausgegeben statt [mm]e^{2\pi}.[/mm]
>  Den Rest mit Drehstreckung und so kenne ich auch noch
> nicht, ist also keine Hilfe. Klar würde mir eine Lösung
> reichen und zu der rechne ich 180° hinzu und hab die
> zweite. Aber erst mal eine haben.
>  Somit kann ich die Aufgabe in die Ecke werfen.

Nur Mut, die erste Hälfte war ja richtig, und mit dem Hinweis auf die Moivre-Formel [mm] $e^{i\varphi}=\cos \varphi [/mm] + i [mm] \sin \varphi$ [/mm] kannst du auch schnell Real- und Imaginärteil deiner 3 Lösungen ausrechnen.

Für die zweite Hälfte hilft diese Formel auch, indem man sie rückwärts liest. Du bestimmst zunächst die olardarstellung der Zahl 1+i: suche zunächst ein [mm] $\varphi$, [/mm] sodass

[mm] r (\cos \varphi + i \sin \varphi) = 1 +i[/mm]

Daraus ergibt sich [mm] $\cos \varphi [/mm] = [mm] \sin\varphi$ [/mm] und (zusammen mit der Tatsache, dass Real- und Imaginärteil beide positiv sind) [mm] $\varphi=\pi/4$ [/mm] und durch Einsetzen dieses Ergebnisses der Wert von r.

Damit hast du: $1-i= [mm] \sqrt{2} e^{i\pi/4} [/mm] $, und aus dieser Zahl kannst du sehr viel einfacher die Wurzel ziehen.

Viele Grüße
   Rainer




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]