matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitstheorieWuerfeln
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Wahrscheinlichkeitstheorie" - Wuerfeln
Wuerfeln < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wuerfeln: Aufgabe
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 18:08 Di 17.12.2013
Autor: Melisa

Aufgabe
Beschreiben Sie mathematisch das zu Grunde liegende diskrete Zufallsexperiment
fur das zweimalige Wurfeln mit einem fairen Wurfel. Bestimmen Sie fur dieses Zufallsexperiment
die Wahrscheinlichkeit folgender Ereignisse:
(i) Die erste Augenzahl ist mindestens so gro wie die zweite.
(ii) Die erste Augenzahl ist um genau 2 kleiner als die zweite.
(iii) Der Abstand der Augenzahlen ist groer gleich 2 und kleiner gleich 5.

Hallo Leute,
ich habe die Aufgabe zu loesen und moechte wissen ob ich das korrekt gemacht habe.
Danke im Voraus

Es wird 2-mal gewuerfelt also
Ω = {1,2,3,4,5,6}x{1,2,3,4,5,6} = [mm] 6^2 [/mm] = 36
Sei F die Menge aller Teilmengen von Ω
und P-Wahrscheinlichkeit

  (Ω, F, P)

i) A [mm] \subseteq [/mm] F
   A = (1,1), (2,1), (2,2), (3,1), (3,2), (3,3), (4,1),
       (4,2), (4,3), (4,4), (5,1), (5,2), (5,3), (5,4),
       (5,5), (6,1), (6,2), (6,3), (6,4), (6,5), (6,6)

   P(A) = [mm] \bruch{|A|}{|Omega|} [/mm] => [mm] \bruch{21}{36} [/mm]
ii) [mm] B\subseteq [/mm] F,
    B = (1,3), (2,4), (3,5), (4,6)
  
    P(B)=  [mm] \bruch{|B|}{|Omega|} [/mm] => [mm] \bruch{4}{36} [/mm]

iii) C [mm] \subseteq [/mm] F,
     C = (1,3), (1,4), (1,5), (1,6), (2,4), (2,5), (2,6),
         (3,1), (3,5), (3,6), (4,1), (4,2), (4,6), (5,1),
         (5,2), (5,3), (6,1), (6,2), (6,3), (6,4)
  
      P(C)=  [mm] \bruch{|C|}{|Omega|} [/mm] => [mm] \bruch{20}{36} [/mm]

        
Bezug
Wuerfeln: Antwort
Status: (Antwort) fertig Status 
Datum: 18:19 Di 17.12.2013
Autor: abakus


> Beschreiben Sie mathematisch das zu Grunde liegende
> diskrete Zufallsexperiment
> fur das zweimalige Wurfeln mit einem fairen Wurfel.
> Bestimmen Sie fur dieses Zufallsexperiment
> die Wahrscheinlichkeit folgender Ereignisse:
> (i) Die erste Augenzahl ist mindestens so gro wie die
> zweite.
> (ii) Die erste Augenzahl ist um genau 2 kleiner als die
> zweite.
> (iii) Der Abstand der Augenzahlen ist groer gleich 2 und
> kleiner gleich 5.
> Hallo Leute,
> ich habe die Aufgabe zu loesen und moechte wissen ob ich
> das korrekt gemacht habe.
> Danke im Voraus

>

> Es wird 2-mal gewuerfelt also
> Ω = {1,2,3,4,5,6}x{1,2,3,4,5,6} = [mm]6^2[/mm] = 36
> Sei F die Menge aller Teilmengen von Ω
> und P-Wahrscheinlichkeit

>

> (Ω, F, P)

>

> i) A [mm]\subseteq[/mm] F
> A = (1,1), (2,1), (2,2), (3,1), (3,2), (3,3), (4,1),
> (4,2), (4,3), (4,4), (5,1), (5,2), (5,3), (5,4),
> (5,5), (6,1), (6,2), (6,3), (6,4), (6,5), (6,6)

>

> P(A) = [mm]\bruch{|A|}{|Omega|}[/mm] => [mm]\bruch{21}{36}[/mm]

[ok]

> ii) [mm]B\subseteq[/mm] F,
> B = (1,3), (2,4), (3,5), (4,6)

>

> P(B)= [mm]\bruch{|B|}{|Omega|}[/mm] => [mm]\bruch{4}{36}[/mm]

[ok]
>

> iii) C [mm]\subseteq[/mm] F,
> C = (1,3), (1,4), (1,5), (1,6), (2,4), (2,5), (2,6),
> (3,1), (3,5), (3,6), (4,1), (4,2), (4,6), (5,1),
> (5,2), (5,3), (6,1), (6,2), (6,3), (6,4)

>

> P(C)= [mm]\bruch{|C|}{|Omega|}[/mm] => [mm]\bruch{20}{36}[/mm]

[ok]
Gruß Abakus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]