matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenKombinatorikWort
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Kombinatorik" - Wort
Wort < Kombinatorik < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wort: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:49 Fr 28.10.2011
Autor: Kuriger

Aufgabe
Wieviele Wörter mit Länge sechs und genau zwei Vokalen können gebildet werden,
mal abgesehen davon, ob diese in tats¨achlich in irgend einer Sprache existieren?

Hallo

es gibt 5 Vokale und 21 Konsonanten...

Da stehe ich gerade ziemlich an. Nicht mal der Lösung kann ichw irklich folgen


Zuna¨chst sind die zwei Pla¨tze fu¨r die Vokale auszuwa¨hlen, dies ist auf
62

= 15 Arten m¨oglich. Zu jeder solchen Platzierung der Vokale m¨ussen jetzt
die beiden Pl¨atze mit Vokalen besetzt werden, was auf [mm] \vektor{5 \\2} [/mm] = 25 Arten m¨oglich.
Das verstehe ich nicht, denn [mm] \vektor{5 \\ 2} [/mm] ist ja die Formel für eine Kombination ohne Wiederholung. (Also Aufgabentyp ich habe 5 Personen und zwei Stühle). Aber hier spielt ja die Reihenfolge sehr wohl eine Rolle.
Müsste ich hier nicht folgende Formel nehmen: [mm] \vektor{6! \\ 4!*2!} [/mm] = 15 ?



ist, und die ¨ubrigen 4 Pl¨atze m¨ussen mit Konsonanten besetzt werden, dies ist auf
214 = 194481 Arten m¨oglich. Insgesamt gibt es also 15  25  194481 = 72930375
Verschieden W¨orter der genannten Art.





        
Bezug
Wort: Antwort
Status: (Antwort) fertig Status 
Datum: 22:07 Fr 28.10.2011
Autor: MathePower

Hallo Kuriger,


> Wieviele Wörter mit Länge sechs und genau zwei Vokalen
> können gebildet werden,
>  mal abgesehen davon, ob diese in tats¨achlich in irgend
> einer Sprache existieren?
>  Hallo
>  
> es gibt 5 Vokale und 21 Konsonanten...
>  
> Da stehe ich gerade ziemlich an. Nicht mal der Lösung kann
> ichw irklich folgen
>  
>
> Zuna¨chst sind die zwei Pla¨tze fu¨r die Vokale
> auszuwa¨hlen, dies ist auf
>  62
>  
>  = 15 Arten m¨oglich. Zu jeder solchen Platzierung der
> Vokale m¨ussen jetzt
>  die beiden Pl¨atze mit Vokalen besetzt werden, was auf
> [mm]\vektor{5 \\2}[/mm] = 25 Arten m¨oglich.


Das ist die falsche Formel.


>  Das verstehe ich nicht, denn [mm]\vektor{5 \\ 2}[/mm] ist ja die
> Formel für eine Kombination ohne Wiederholung. (Also
> Aufgabentyp ich habe 5 Personen und zwei Stühle). Aber
> hier spielt ja die Reihenfolge sehr wohl eine Rolle.


Bei der Auswahl der Vokale spielt die Reihenfolge keine Rolle.


>  Müsste ich hier nicht folgende Formel nehmen: [mm]\vektor{6! \\ 4!*2!}[/mm]
> = 15 ?
>  
>
>
> ist, und die ¨ubrigen 4 Pl¨atze m¨ussen mit Konsonanten
> besetzt werden, dies ist auf
>  214 = 194481 Arten m¨oglich. Insgesamt gibt es also 15 
> 25  194481 = 72930375
>  Verschieden W¨orter der genannten Art.
>  


Gruss
MathePower

Bezug
                
Bezug
Wort: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:04 Di 01.11.2011
Autor: Kuriger

Hallo

Könnte mir jemand die korrekte Berechnung Schritt für Schritt aufzeigen?

Habe leider momentan ein ziemliches durcheinander. Würde mir sicherlich sehr helfen.

Vielen Dank

Bezug
                        
Bezug
Wort: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:18 Mi 02.11.2011
Autor: reverend

Diese Frage hat Al-Chwarizmi weiter unten beantwortet.


Bezug
        
Bezug
Wort: Antwort
Status: (Antwort) fertig Status 
Datum: 21:36 Di 01.11.2011
Autor: Al-Chwarizmi


> Wieviele Wörter mit Länge sechs und genau zwei Vokalen
> können gebildet werden,
>  mal abgesehen davon, ob diese in tats¨achlich in irgend
> einer Sprache existieren?
>  Hallo
>  
> es gibt 5 Vokale und 21 Konsonanten...


Hallo Kuriger,

falls tatsächlich Wörter wie etwa "prjqau", "ffruuk",
"aqnrpi" erlaubt sind, so geht die Rechnung so:

1.) Anzahl Möglichkeiten für die Auswahl der beiden
    Stellen für die Vokale:

     [mm] \pmat{6\\2}=15 [/mm]

2.) Anzahl der Möglichkeiten, an diesen beiden Stellen
    zwei Vokale zu setzen:

     [mm] 5^2=25 [/mm]

3.) Anzahl der Möglichkeiten, an den verbleibenden Stellen
    vier Konsonanten zu setzen:

     [mm] 21^4= [/mm] 194'481

Insgesamt ergibt dies 15*25*194'481=72'930'375 Möglichkeiten.
Deine Rechnung war also wohl richtig, obwohl ich bei der Inter-
pretation deines Protokolls eindeutig Probleme hatte ...

LG



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]