Winkel berechnen < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 19:36 Sa 08.12.2012 | Autor: | Natilin |
Aufgabe | Der Schwerpunkt eines Dreiecks
A(4/-2/0), B (-2/2/2) und C (4/0/7) sind die Eckpunkte eines Dreiecks.
b) berechne die Innenwinkel des Dreiecks |
Ich habe versucht, die Innenwinkel zu berechnen, indem ich erst die Geradengleichungen durch die Aufpunkte und die Ortsvektoren, die ich mit "Spitze - Fuß" berechnet habe, aufstellte.
Meine Gleichungen:
c:x= (4/-2/0) + lamda mal (0/2/7)
a:x= (4/-2/0) + my mal (-6/4/2)
b:x= (-2/2/2) + sigma mal (6/-2/5)
Die Schnittpunkte der Geraden sind ja in dem Fall meine Aufpunkte A, B und C, deshalb muss ich sie ja an dieser Stelle nicht mehr berechnen und kann gleich die Punkte in die Formel für Winkel an Schnittpunkten einsetzen.
Als Beispiel habe ich die Gleichung c und die Gleichung a genommen, weil ich alpha berechnen wollte. c und a schließen in meiner skizze nämlich den winkel alpha ein.
Bei mir kommt aber heraus: cos alpha = Skalarprodukt von (0/2/7) und (-6/4/2) im Zähler und Wurzel aus 56+ Wurzel aus 53 im Nenner.
Insgesamt kommt bei mir für den shiftcosinus ein komischer wert raus wie 1,2 irgendwas. wenn ich das ganze erst in den cosinus setze und danach in den arcuscosinus, kommt etwas mit 2,.. raus.
Ich hoffe, ihr könnt mir hier irgendwie weiterhelfen :(
|
|
|
|
Hallo,
> Der Schwerpunkt eines Dreiecks
Was hat es damit auf sich, war das die Überschrift der ganzen Aufgabe? Denn mit deinen Fragen hat es eigentlich nichts zu tun.
>
> A(4/-2/0), B (-2/2/2) und C (4/0/7) sind die Eckpunkte
> eines Dreiecks.
>
> b) berechne die Innenwinkel des Dreiecks
> Ich habe versucht, die Innenwinkel zu berechnen, indem ich
> erst die Geradengleichungen durch die Aufpunkte und die
> Ortsvektoren, die ich mit "Spitze - Fuß" berechnet habe,
> aufstellte.
>
> Meine Gleichungen:
>
> c:x= (4/-2/0) + lamda mal (0/2/7)
> a:x= (4/-2/0) + my mal (-6/4/2)
> b:x= (-2/2/2) + sigma mal (6/-2/5)
>
Hier ist einiges, was mich etwas verwirrt:
1). Du benötigst hier keine Geradengleichungen, die Vektoren [mm] \overrightarrow{AB}, \overrightarrow{AC} [/mm] und [mm] \overrightarrow{BC} [/mm] reichen aus.
2). Deine Bezeichnungen der Geraden sind verwirrend, sie suggerieren, dass die jeweilige Gerade die dem betreffenden Punkt gegenüberliegende Seite enthält, das stimmt aber nicht.
Die Richtungsvektoren deiner Geraden stimmen aber allesamt.
> Die Schnittpunkte der Geraden sind ja in dem Fall meine
> Aufpunkte A, B und C, deshalb muss ich sie ja an dieser
> Stelle nicht mehr berechnen und kann gleich die Punkte in
> die Formel für Winkel an Schnittpunkten einsetzen.
Janicht. In den Kosinussatz setzt man Vektoren ein, bei denen einen diue Richtung interessiert, also keine Ortsvektoren (zumindest i.a. nicht).
> Als Beispiel habe ich die Gleichung c und die Gleichung a
> genommen, weil ich alpha berechnen wollte. c und a
> schließen in meiner skizze nämlich den winkel alpha ein.
>
>
> Bei mir kommt aber heraus: cos alpha = Skalarprodukt von
> (0/2/7) und (-6/4/2) im Zähler und Wurzel aus 56+ Wurzel
> aus 53 im Nenner.
Das sollte ja so aussehen:
[mm] cos\alpha=\bruch{0*(-6)+2*4+7*2}{\wurzel{2^2+7^2}*\wurzel{(-6^2+4^2^2}}=\bruch{22}{\wurzel{53}*\wurzel{56}}
[/mm]
Und sollte also bis hierher auch noch richtig sein.
> sgesamt kommt bei mir für den shiftcosinus
shiftcosinus? Kenne ich nicht!
> ein komischer
> wert raus wie 1,2 irgendwas.
Um genau zu sein, ca. 1.155...
Der Grund ist ein sehr einfacher und - sollte er dir in einer Klausur oder Prüfung passieren - ungeheuer ärgerlicher: du hast vergessen, deinen Taschenrechner vom Bogenmaß nach Altgrad (Degree o.ä.) zu stellen.
> wenn ich das ganze erst in den
> cosinus setze und danach in den arcuscosinus, kommt etwas
> mit 2,.. raus.
Das verstehe ich jetzt ehrlich gesagt überhaupt nicht mehr: sprich, was willst du uns mit deinem letzten Satz sagen?
>
> Ich hoffe, ihr könnt mir hier irgendwie weiterhelfen :(
>
Rechen es nochmal in Altgrad, und du wirst sehen, das auch du
[mm] \alpha\approx{66.18^{\circ}}
[/mm]
erhältst.
Gruß, Diophant
|
|
|
|