matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenWindschiefe Geraden
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra - Matrizen" - Windschiefe Geraden
Windschiefe Geraden < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Windschiefe Geraden: Rückfrage,Korrektur, Tipp,Idee
Status: (Frage) beantwortet Status 
Datum: 17:23 Mo 04.12.2017
Autor: Dom_89

Aufgabe
Gegeben sind die folgenden vier Punkte:

A= (2,0,-1) ; B=(1,-1,0) ; C=(0,2,1) und D=(1,0,1)

a) Bestimme die Parameterform der Geraden [mm] g_{1} [/mm] durch A und B sowie der Geraden [mm] g_{2} [/mm] durch C und D

b) Zeige, dass [mm] g_{1} [/mm] und [mm] g_{2} [/mm] windschief zueinander stehen

c) Berechne den Abstand der beiden Geraden zueinander

Hallo,

hier einmal mein Vorgehen:

a)

[mm] g_{1} [/mm] = [mm] \overrightarrow{A} [/mm] + [mm] \lambda(\overrightarrow{B}-\overrightarrow{A}) [/mm] = [mm] \vektor{2 \\ 0 \\ -1} [/mm] + [mm] \lambda \vektor{-1 \\ -1 \\ 1} [/mm]

[mm] g_{2} [/mm] = [mm] \overrightarrow{C} [/mm] + [mm] \mu(\overrightarrow{D}-\overrightarrow{C}) [/mm] = [mm] \vektor{0 \\ 2 \\ 1} [/mm] + [mm] \mu \vektor{1 \\ -2 \\ 0} [/mm]

b)

1.

Auf Kolinearität prüfen: [mm] \vektor{-1 \\ -1 \\ 1} [/mm] = r [mm] \vektor{1 \\ -2 \\ 0} [/mm] --> Da nicht möglich sind die Geraden windschief oder schneiden sich

2.

[mm] 2-\lambda [/mm] = [mm] \mu [/mm]
[mm] -\lambda [/mm] = [mm] 2-2\mu [/mm]
[mm] -1+\lambda [/mm] = 1

--> [mm] \pmat{ -1 & -1 | -2 \\ -1 & 2 | 2 \\ 1 & 0 | 0} [/mm]

Da kein wahre Aussage sind die Geraden windschief

c)

E: [mm] \vec{x} [/mm] = [mm] \vektor{0 \\ 2 \\ 1} [/mm] + [mm] \mu \vektor{1 \\ -2 \\ 0} [/mm] + [mm] \lambda \vektor{-1 \\ -1 \\ 1} [/mm]

[mm] \vec{n} [/mm] = [mm] \vektor{-1 \\ -1 \\ 1} [/mm] X [mm] \vektor{1 \\ -2 \\ 0} [/mm] = [mm] \vektor{2 \\ 1 \\ 3} [/mm]

[mm] \vmat{ \vec{n}} [/mm] = [mm] \wurzel{2^{2}+1^{2}+3^{2}} [/mm] = [mm] \wurzel{14} [/mm]

--> [mm] 2x_{1}+x_{2}+3x_{3} [/mm] = [mm] \bruch{1}{\wurzel{14} } [/mm] = [mm] \bruch{2}{\wurzel{14} }x_{1}+\bruch{1}{\wurzel{14} }x_{2}+\bruch{3}{\wurzel{14} }x_{3} [/mm]


Ist das soweit in Ordnung, oder muss noch etwas verändert werden?

Vielen Dank für eure Hilfe!

        
Bezug
Windschiefe Geraden: Antwort
Status: (Antwort) fertig Status 
Datum: 18:10 Mo 04.12.2017
Autor: Diophant

Hallo,

> Gegeben sind die folgenden vier Punkte:

>

> A= (2,0,-1) ; B=(1,-1,0) ; C=(0,2,1) und D=(1,0,1)

>

> a) Bestimme die Parameterform der Geraden [mm]g_{1}[/mm] durch A und
> B sowie der Geraden [mm]g_{2}[/mm] durch C und D

>

> b) Zeige, dass [mm]g_{1}[/mm] und [mm]g_{2}[/mm] windschief zueinander
> stehen

>

> c) Berechne den Abstand der beiden Geraden zueinander
> Hallo,

>

> hier einmal mein Vorgehen:

>

> a)

>

> [mm]g_{1}[/mm] = [mm]\overrightarrow{A}[/mm] +
> [mm]\lambda(\overrightarrow{B}-\overrightarrow{A})[/mm] = [mm]\vektor{2 \\ 0 \\ -1}[/mm]
> + [mm]\lambda \vektor{-1 \\ -1 \\ 1}[/mm]

>

> [mm]g_{2}[/mm] = [mm]\overrightarrow{C}[/mm] +
> [mm]\mu(\overrightarrow{D}-\overrightarrow{C})[/mm] = [mm]\vektor{0 \\ 2 \\ 1}[/mm]
> + [mm]\mu \vektor{1 \\ -2 \\ 0}[/mm]

>

Das passt. [ok]

(Sorry für die 'verrupften Zitate', da spinnt mal wieder die Forensoftware, wie es ausschaut...)


> b)

>

> 1.

>

> Auf Kolinearität prüfen: [mm]\vektor{-1 \\ -1 \\ 1}[/mm] = r
> [mm]\vektor{1 \\ -2 \\ 0}[/mm] --> Da nicht möglich sind die
> Geraden windschief oder schneiden sich

>

> 2.

>

> [mm]2-\lambda[/mm] = [mm]\mu[/mm]
> [mm]-\lambda[/mm] = [mm]2-2\mu[/mm]
> [mm]-1+\lambda[/mm] = 1

>

> --> [mm]\pmat{ -1 & -1 | -2 \\ -1 & 2 | 2 \\ 1 & 0 | 0}[/mm]

>

> Da kein wahre Aussage sind die Geraden windschief

Auch das ist richtig gerechnet.
Es stimmt nicht ganz. Dein LGS ist korrekt, die Matrix nicht (siehe meine zweite Antwort).
Auch könntest du (mit der korrekten Matrix oder dem LGS) noch ein wenig weiterrechnen, damit die leere Lösungsmenge noch offensichtlicher wird.

>

> c)

>

> E: [mm]\vec{x}[/mm] = [mm]\vektor{0 \\ 2 \\ 1}[/mm] + [mm]\mu \vektor{1 \\ -2 \\ 0}[/mm]
> + [mm]\lambda \vektor{-1 \\ -1 \\ 1}[/mm]

>

> [mm]\vec{n}[/mm] = [mm]\vektor{-1 \\ -1 \\ 1}[/mm] X [mm]\vektor{1 \\ -2 \\ 0}[/mm] =
> [mm]\vektor{2 \\ 1 \\ 3}[/mm]

>

> [mm]\vmat{ \vec{n}}[/mm] = [mm]\wurzel{2^{2}+1^{2}+3^{2}}[/mm] = [mm]\wurzel{14}[/mm]

>

> --> [mm]2x_{1}+x_{2}+3x_{3}[/mm] = [mm]\bruch{1}{\wurzel{14} }[/mm] =
> [mm]\bruch{2}{\wurzel{14} }x_{1}+\bruch{1}{\wurzel{14} }x_{2}+\bruch{3}{\wurzel{14} }x_{3}[/mm]

>
>

> Ist das soweit in Ordnung, oder muss noch etwas verändert
> werden?

Hier bist du aber noch nicht ganz fertig. Du hast die Gleichung einer Ebene aufgestellt, die von den Richtungsvektoren von [mm] g_1 [/mm] und [mm] g_2 [/mm] aufgespannt wird und die [mm] g_2 [/mm] enthält. Die erhaltenen Ebenengleichungen sind richtig. Jetzt musst du aber mit der Formel für den Abstand Punkt-Ebene noch den Abstand der beiden Geraden berechnen. Als Punkt musst du dabei den Schnittpunkt von [mm] g_1 [/mm] mit E* den Stützvektor von [mm] g_1 [/mm] verwenden, da [mm] g_2 [/mm] ja in der Ebene liegt.


Gruß, Diophant

*Sorry, die durchgestrichene Version war Uninn.

Bezug
                
Bezug
Windschiefe Geraden: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:12 Di 05.12.2017
Autor: Dom_89

Hallo,

vielen Dank für die schnelle Antwort!

Ich habe dazu noch zwei Fragen:

zu b) Hier verstehe ich nicht wirklich wie ich weiter vorgehen muss, damit das ganze noch offensichtlicher wird?

zu c)

Ich hoffe, ich habe deinen Rat richtig verstanden - hier einmal mein weiteres Vorgehen:

d = [mm] \vektor{0 \\ 2 \\ 1}*\vektor{\bruch{2}{\wurzel{14}} \\ \bruch{1}{\wurzel{14}} \\ \bruch{3}{\wurzel{14}}} [/mm] = [mm] \vektor{\bruch{0}{\wurzel{14}} \\ \bruch{2}{\wurzel{14}} \\ \bruch{3}{\wurzel{14}}} [/mm] = [mm] \bruch{5}{\wurzel{14}} [/mm]

[mm] \vec{n}_{0} [/mm] = [mm] \bruch{2}{\wurzel{14}}x_{1}+\bruch{1}{\wurzel{14}}x_{2}+\bruch{3}{\wurzel{14}}x_{3}=\bruch{5}{\wurzel{14}} [/mm]

[mm] dg(g_{1},g_{2}) [/mm] = [mm] \vmat{ <\vektor{\bruch{2}{\wurzel{14}} \\ \bruch{1}{\wurzel{14}} \\ \bruch{3}{\wurzel{14}}} * \vektor{2 \\ 0 \\ 1}>-\bruch{5}{\wurzel{14}}} [/mm] =  [mm] \vmat{ \vektor{\bruch{4}{\wurzel{14}} \\ \bruch{0}{\wurzel{14}} \\ \bruch{3}{\wurzel{14}}}-\bruch{5}{\wurzel{14}}} [/mm] = [mm] \vmat{\bruch{1}{\wurzel{14}}-\bruch{5}{\wurzel{14}}} [/mm] = [mm] \vmat{ \bruch{-4}{\wurzel{14}}} [/mm] = [mm] \bruch{4}{\wurzel{14}} [/mm]

Vielen Dank für die Hilfe!

Bezug
                        
Bezug
Windschiefe Geraden: Antwort
Status: (Antwort) fertig Status 
Datum: 12:55 Di 05.12.2017
Autor: Diophant

Hallo,

> Ich habe dazu noch zwei Fragen:

>

> zu b) Hier verstehe ich nicht wirklich wie ich weiter
> vorgehen muss, damit das ganze noch offensichtlicher wird?

ich war da ein wenig vorschnell mit der Bestätigung der Richtigkeit. Das LGS, dass du aufgestellt hast, ist richtig. Die Umformung in die Matrix-Schreibweise ist falsch, da ist dir konkret in der letzten Zeile ein Fehler unterlaufen.

Man kann es aber leicht ohne Matrix nachrechnen:

aus (III) folgt [mm] \lambda=2 [/mm]

mit (II) folgt [mm] \mu=2 [/mm]

Beides in (I) eingesetzt ergibt

[mm] 2-2\ne{2} [/mm]

>

> zu c)

>

> Ich hoffe, ich habe deinen Rat richtig verstanden - hier
> einmal mein weiteres Vorgehen:

>

> d = [mm]\vektor{0 \\ 2 \\ 1}*\vektor{\bruch{2}{\wurzel{14}} \\ \bruch{1}{\wurzel{14}} \\ \bruch{3}{\wurzel{14}}}[/mm]
> = [mm]\vektor{\bruch{0}{\wurzel{14}} \\ \bruch{2}{\wurzel{14}} \\ \bruch{3}{\wurzel{14}}}[/mm]
> = [mm]\bruch{5}{\wurzel{14}}[/mm]

>

> [mm]%5Cvec%7Bn%7D_%7B0%7D[/mm] =
> [mm]\bruch{2}{\wurzel{14}}x_{1}+\bruch{1}{\wurzel{14}}x_{2}+\bruch{3}{\wurzel{14}}x_{3}=\bruch{5}{\wurzel{14}}[/mm]

>

> [mm]dg(g_{1},g_{2})[/mm] = [mm]%5Cvmat%7B%20%3C%5Cvektor%7B%5Cbruch%7B2%7D%7B%5Cwurzel%7B14%7D%7D%20%5C%5C%20%5Cbruch%7B1%7D%7B%5Cwurzel%7B14%7D%7D%20%5C%5C%20%5Cbruch%7B3%7D%7B%5Cwurzel%7B14%7D%7D%7D%20*%20%5Cvektor%7B2%20%5C%5C%200%20%5C%5C%201%7D%3E-%5Cbruch%7B5%7D%7B%5Cwurzel%7B14%7D%7D%7D[/mm]
> = [mm]\vmat{ \vektor{\bruch{4}{\wurzel{14}} \\ \bruch{0}{\wurzel{14}} \\ \bruch{3}{\wurzel{14}}}-\bruch{5}{\wurzel{14}}}[/mm]
> = [mm]\vmat{\bruch{1}{\wurzel{14}}-\bruch{5}{\wurzel{14}}}[/mm] =
> [mm]\vmat{ \bruch{-4}{\wurzel{14}}}[/mm] = [mm]\bruch{4}{\wurzel{14}}[/mm]

>

Ja, der Abstand passt (für gewöhnlich sollte man noch die virtuelle Einheit 'LE' dahintersetzen, aber du wirst selbst am besten wissen, ob das verlangt wird oder nicht). [ok]


Gruß, Diophant

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]