matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikWiederkehrsatz von Mark Kac
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Stochastik" - Wiederkehrsatz von Mark Kac
Wiederkehrsatz von Mark Kac < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wiederkehrsatz von Mark Kac: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 13:26 Mi 28.05.2014
Autor: Tina213

Aufgabe
[Wiederkehrsatz von Mark Kac]:
Sei (Xn)n≥0 eine Folge von Zufallsgrößen. (Xn) stationär bezüglich [mm] P\alpha, \alpha [/mm] eine stationäre Verteilung. Dann gilt:
[mm] \alpha(x)E^{x} (t_{x})=P^{\alpha}(t_{x} [/mm] <∞) , wobei [mm] E^{x} [/mm] der Erwartungswert bezüglich [mm] P^{x} [/mm] ist. ( [mm] t_{x} [/mm] sei die Stoppzeit)

[Beweis (Anfang)]:
Dies ergibt sich aus der Stationarität der Folge [mm] (X_{n})_{n\ge 0} [/mm] bezüglich [mm] P^{\alpha}. [/mm] Es gilt nämlich

[mm] \alpha(x) E^{\alpha}(t_{x}) [/mm] = [mm] E^{\alpha}(1_{(X_{0}=x)} t_{x}) [/mm] = [mm] E^{\alpha}(1_{X_{0}=x} \summe_{k\ge 0} 1_{(t_{x}>k)}) [/mm]  =....


Es geht hierbei um den Beweis vom Wiederkehrsatz von Mark Kac.
Ich muss für ein Referat die einzelnen Schritte vom Beweis mathematisch präzise erläutern. Leider verstehe ich schon die ersten beiden Schritte nicht. Wieso schreibt man [mm] E^{\alpha} [/mm] und wie kommt die Indikatorfunktion zustande?
Kann mir da jemand helfen?

Vielen Dank im Voraus!


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Wiederkehrsatz von Mark Kac: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:20 So 01.06.2014
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Wiederkehrsatz von Mark Kac: Frage noch aktuell
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:47 So 01.06.2014
Autor: Diophant

* PUSH *

Gruß, Diophant

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]