matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperWieder: Ordnungsaxiome
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Gruppe, Ring, Körper" - Wieder: Ordnungsaxiome
Wieder: Ordnungsaxiome < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wieder: Ordnungsaxiome: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:05 Di 06.11.2007
Autor: abi2007LK

Hallo,

ich komme einfach nicht weiter.

Ich soll zeigen, dass für a, b, c, d im geordneten Körper K:

[mm] Wenn\; 0\; <\; a\; <\; c\; und\; 0\; >\; d\; >\; b,\; dann\; gilt\; \frac{a}{b}\; >\; \frac{c}{d} [/mm]

Ich habe so viel rumprobiert und mir die Ordnungsaxiome nochmals genau angeschaut - komme aber nich auf die Lösung bzw. den Beweis.

Da gibts doch bestimmt einen Trick.

        
Bezug
Wieder: Ordnungsaxiome: Antwort
Status: (Antwort) fertig Status 
Datum: 21:50 Di 06.11.2007
Autor: leduart

Hallo
0<a<c  und 0<d'<b'  dabei ist d'=-d, b'=-b
jetzt einfach  a/b'<c/d'  danach mit -1 multiplizieren dann dreht sich < zeichen um. Mir fällt es leichter mit auch im Aussehen positiven Zahlen zu rechnen. vielleicht gehts dir genauso. natürlich kann man sich den Umweg über die d',b' sparen und gleich -b,-d schreiben.
Gruss leduart

Bezug
                
Bezug
Wieder: Ordnungsaxiome: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 13:14 Mi 07.11.2007
Autor: abi2007LK

Hallo und danke.

Wie kommst du auf: a/b'<c/d' ?

Bezug
                        
Bezug
Wieder: Ordnungsaxiome: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:20 Fr 09.11.2007
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]