matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitsrechnungWie viele Würfel braucht man?
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Wahrscheinlichkeitsrechnung" - Wie viele Würfel braucht man?
Wie viele Würfel braucht man? < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wie viele Würfel braucht man?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:06 So 08.06.2014
Autor: rabilein1

Aufgabe
Es soll ein faires Spiel mit so wenig wie möglich roten und blauen Würfeln werden.


Sämtliche Würfel werden gleichzeitig geworfen, und es wird folgendermaßen gewertet:

Die Augenzahl der roten Würfel werden quadriert und sind positiv.
Die Augenzahl der blauen Würfel zählen einfach und sind negativ.


Frage:
Wie viele rote und blaue Würfel braucht man für dieses Spiel?

Noch einmal zusammengefasst:

Das Spiel soll fair sein, also muss sich der Erwartungswert der positiven und negativen Ereignisse ausgleichen.

Außerdem sollen es möglichst wenig Würfel sein.

Da es keine halben Würfel gibt, dürfen nur "Natürliche Zahlen" rauskommen.


Meine Idee:

Man muss die Erwartungswerte der roten und blauen Würfel zueinander ins Verhältnis setzen, und dann so lange kürzen bzw. erweitern, bis nur noch "Natürliche Zahlen" übrig bleiben.

In etwa so:  [mm] \bruch{\summe_{x=1}^{6}x^{2}}{\summe_{x=1}^{6}x} [/mm] = [mm] \bruch{13}{3} [/mm]

Meine Antwort wäre:
Man braucht 3 rote und 13 blaue Würfel, um das Spiel zu spielen.


Ist das so korrekt, oder steckt da ein Gedanken(oder Rechen-)fehler drin?

        
Bezug
Wie viele Würfel braucht man?: Antwort
Status: (Antwort) fertig Status 
Datum: 20:30 So 08.06.2014
Autor: luis52

Moin, ich kapiere das Spiel nicht.

>
> Sämtliche Würfel werden gleichzeitig geworfen, und es
> wird folgendermaßen gewertet:
>  
> Die Augenzahl der roten Würfel werden quadriert und sind
> positiv.
>  Die Augenzahl der blauen Würfel zählen einfach und sind
> negativ.
>

Angenommen es gibt zwei rote und drei blaue Wuerfel. Man erhaelt in einem Versuch [mm] $\red{2^2=4}$ [/mm] und [mm] $\red{5^2=25}$ [/mm] bzw [mm] $\blue{-1,-4,-1}$. [/mm] Wie ist jetzt der Spielausgang?



Bezug
                
Bezug
Wie viele Würfel braucht man?: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:48 So 08.06.2014
Autor: rabilein1


> Moin, ich kapiere das Spiel nicht.
>  
> >
> > Sämtliche Würfel werden gleichzeitig geworfen, und es
> > wird folgendermaßen gewertet:
>  >  
> > Die Augenzahl der roten Würfel werden quadriert und sind
> > positiv.
>  >  Die Augenzahl der blauen Würfel zählen einfach und
> sind
> > negativ.
>  >

>
> Angenommen es gibt zwei rote und drei blaue Wuerfel. Man
> erhaelt in einem Versuch [mm]\red{2^2=4}[/mm] und [mm]\red{5^2=25}[/mm] bzw
> [mm]\blue{-1,-4,-1}[/mm]. Wie ist jetzt der Spielausgang?
>  
>  

Der Spielausgang ist dann, dass der Würfler 4+25-1-4-1 = +23 Punkte hat.
Wenn um Geld gespielt wird, hätte er 23 Euro gewonnen.

Bezug
        
Bezug
Wie viele Würfel braucht man?: Antwort
Status: (Antwort) fertig Status 
Datum: 21:15 So 08.06.2014
Autor: luis52


> Ist das so korrekt, oder steckt da ein Gedanken(oder
> Rechen-)fehler drin?  

[ok]


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]