matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMechanikWellenberechnung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Mechanik" - Wellenberechnung
Wellenberechnung < Mechanik < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mechanik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wellenberechnung: Ort-Zeit-Funktion aufstellen
Status: (Frage) beantwortet Status 
Datum: 21:02 Di 21.07.2009
Autor: RudiBe

Aufgabe
Für eine Welle gilt:  [mm] \eta [/mm] (t,x) = [mm] \eta_{m} [/mm] sin 2Pi [mm] (\bruch{t}{T}-\bruch{x}{\lambda}) [/mm]

Nach welcher Ort-Zeit-Funktion x(t) breitet sich die Bewegungsphase aus, in der sich das Teilchen an der Stelle [mm] x_{0} [/mm] zur Zeit [mm] t_{0} [/mm] befindet.

Gegeben: [mm] \lambda, [/mm] T, [mm] x_{0}= \bruch{\lambda}{2} [/mm] , [mm] t_{0}=\bruch{T}{4} [/mm]

irgendwie finde ich in keinem Lehrbuch nen Ansatz dazu.

Zu [mm] \lambda, [/mm] und Tau gibt es auch wiklich keine Werte.

Wie nun lösen?

rauskommen soll folgendes: x(t)= [mm] \bruch{\lambda}{T}*t+\bruch{\lambda}{4} [/mm]

Wer kann mir da helfen?


PS: ich habe diese Frage nur in diesem Forum gepostet.

        
Bezug
Wellenberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:33 Di 21.07.2009
Autor: leduart

Hallo Rudi
Bei der so dargestellten Welle ist doch bei t=o und x=0 der Nulldurchgang. nunun musst du sie nur in x und t Richtung verschieben , sodass du dann
$ [mm] \eta_{m} [/mm] $ sin [mm] (2\pi [/mm] $ [mm] (\bruch{t}{T}-\bruch{x}{\lambda}))+\phi [/mm] $
hast.
wenn [mm] \phi=|pm\pi [/mm] oder [mm] \pm\pi/2 [/mm] ist kannst du [mm] \pm [/mm] cos oder -sin
ersetzen

gruss leduart

Bezug
                
Bezug
Wellenberechnung: danke erstmal ...
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:54 Di 21.07.2009
Autor: RudiBe

Ich muss für heute Feierabend machen, morgen ist Physikklausur 2. Semester dran.
Ich danke allen bisherigen Unterstützern und werde mich der Aufgabe später wieder zuwenden.
Fürs Erste klingt Mr. Leduarts Beschreibung plausibel, aber ich kriegs heut nicht mehr gebacken.

Danke und Gruß
Rudi

Bezug
        
Bezug
Wellenberechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:27 Di 21.07.2009
Autor: Franz1

In diesem Fall ist gefragt, wo sich die Phase [tex]\varphi(x_{0},t_{0})[/tex] wiederholt [tex]\varphi(x_{0},t_{0}) = \varphi(x,t) [/tex]. Mit den gegebenen Werten für [tex]x_{0}[/tex] und [tex]t_{0}[/tex] folgt das gewünschte.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mechanik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]