matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenZahlentheorieWelche Peano-Axiome gelten
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Zahlentheorie" - Welche Peano-Axiome gelten
Welche Peano-Axiome gelten < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Welche Peano-Axiome gelten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:21 Mo 25.04.2011
Autor: anetteS

Aufgabe
Welche der Peano-Axiome gelten für die folgenden Paare (N; s) einer Menge
N und einer Abbildung s : N -> N:
N =  [mm] \IN \cup [/mm] { [mm] \IN [/mm] + [mm] \bruch{1}{2} [/mm] }
s(x)=x+1

Hallo!
Ich sitze nun schon seit Stunden an dieser Aufgabe, die doch eigentlich nicht so schwer sein kann und trotzdem komme ich nicht drauf.
Also ich habe mir zuerst die Mengen N und s(N) aufgeschrieben:
N={1; 1,5; 2; 2,5; 3; 3,5...} (wir hatten die natürlichen Zahlen in der Vl ohne Null definiert)
s(N)={2; 2,5; 3; 3,5;...}

Die Peano-Axiome hatten wir in der Vl so definiert:
P1) 1 [mm] \not\in s(\IN) [/mm]
P2) s ist injektiv
P3) Induktionsprinzip: Sei A [mm] \subset \IN, [/mm] s(A) [mm] \subset [/mm] A, 1 in A. Dann gilt [mm] A=\IN [/mm]

Zu P1) Dass 1 nicht in s(N) ist sieht man ja schon, wenn man s(N) aufschreibt.

Zu P2) Hier kommen bei mir schon Probleme. Ich muss doch zeigen: Für alle x1,x2 aus N gilt: aus s(x1)=s(x2) folgt x1=x2.
s(x1)=s(x2)--> x1+1=x2+1-->x1=x2
Stimmt das? Irgendwie kommt mir das komisch vor...

Zu P3) Hier weiß ich gar nicht, was ich zeigen muss.
Was ist denn A bei mir? Ist das N (also die gegebene Menge)?
Wenn das so ist, dann gilt ja bereits nicht N in [mm] \IN, [/mm] oder? Dann gilt das Induktionsprinzip doch sowieso nicht...


Vielen Dank für Eure Hilfe,
Anette.


        
Bezug
Welche Peano-Axiome gelten: Antwort
Status: (Antwort) fertig Status 
Datum: 17:40 Di 26.04.2011
Autor: meili

Hallo Anette,

> Welche der Peano-Axiome gelten für die folgenden Paare (N;
> s) einer Menge
>  N und einer Abbildung s : N -> N:

>  N =  [mm]\IN \cup \{ \IN + \bruch{1}{2} \} [/mm]
>  s(x)=x+1
>  Hallo!
>  Ich sitze nun schon seit Stunden an dieser Aufgabe, die
> doch eigentlich nicht so schwer sein kann und trotzdem
> komme ich nicht drauf.
>  Also ich habe mir zuerst die Mengen N und s(N)
> aufgeschrieben:
>  N={1; 1,5; 2; 2,5; 3; 3,5...} (wir hatten die natürlichen
> Zahlen in der Vl ohne Null definiert)
>  s(N)={2; 2,5; 3; 3,5;...}
>  
> Die Peano-Axiome hatten wir in der Vl so definiert:
>  P1) 1 [mm]\not\in s(\IN)[/mm]
>  P2) s ist injektiv
>  P3) Induktionsprinzip: Sei A [mm]\subset \IN,[/mm] s(A) [mm]\subset[/mm] A,
> 1 in A. Dann gilt [mm]A=\IN[/mm]
>  
> Zu P1) Dass 1 nicht in s(N) ist sieht man ja schon, wenn
> man s(N) aufschreibt.

[ok]

>  
> Zu P2) Hier kommen bei mir schon Probleme. Ich muss doch
> zeigen: Für alle x1,x2 aus N gilt: aus s(x1)=s(x2) folgt
> x1=x2.
>  s(x1)=s(x2)--> x1+1=x2+1-->x1=x2

> Stimmt das? Irgendwie kommt mir das komisch vor...

[ok]

>  
> Zu P3) Hier weiß ich gar nicht, was ich zeigen muss.
> Was ist denn A bei mir? Ist das N (also die gegebene
> Menge)?
> Wenn das so ist, dann gilt ja bereits nicht N in [mm]\IN,[/mm] oder?
> Dann gilt das Induktionsprinzip doch sowieso nicht...

Muss P3 für (N;s) nicht
P3) Induktionsprinzip: Sei A [mm]\subset N,[/mm] s(A) [mm]\subset[/mm] A,  1 in A. Dann gilt [mm]A=N[/mm]
sein?
Ja, dann gilt es nicht, wenn Du A = [mm] $\IN$ [/mm] wählst.

>  
>
> Vielen Dank für Eure Hilfe,
>  Anette.
>  

Gruß
meili

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]