matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungWelche Fläche ist richtig ?
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Integralrechnung" - Welche Fläche ist richtig ?
Welche Fläche ist richtig ? < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Welche Fläche ist richtig ?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:48 Mo 12.03.2012
Autor: pc_doctor

Aufgabe
Die Graphen von f und g haben 3 oder mehr Schnittpunkte. Bestimmen Sie den Inhalt der von den Graphen von f und g eingeschlossenen Flächen

Hallo , ich habe zwei Funktionen

f(x) = [mm] x^{3} [/mm] - 4x
g(x) = [mm] 3x^2 [/mm]


Schnittpunkte :

f(x) = g(x)

[mm] x^{3} [/mm] - 4x = [mm] 3x^2 [/mm]

[mm] x^{3} [/mm] - [mm] 3x^{2} [/mm] -4x = 0

x( [mm] x^2 [/mm] - 3x -4 ) = 0

[mm] x_1 [/mm] = 0 , [mm] x_2 [/mm] = 4 , [mm] x_3 [/mm] = -1

Erste Teilfläche :

[mm] \integral_{-1}^{0}{f(x)- g(x) dx} [/mm] = [mm] \bruch{3}{4} [/mm]

Das ist der Wert der ersten Teilfläche.

Wenn ich jetzt für die zweite Integrationsgrenze 0 und 4 wähle.

[mm] \integral_{0}^{4}{f(x)-g(x) dx} [/mm] bekomme ich 32 raus , müssen die Ergebnisse der Teilflächen nicht immer den gleichen Nenner haben ?

Wenn ich aber statt [mm] \integral_{0}^{4}{f(x)-g(x) dx} [/mm] ,
[mm] \integral_{0}^{3}{f(x)-g(x) dx} [/mm] rechne bekomme ich [mm] |-\bruch{99}{4} [/mm] raus.

Dann haben sie aufeinmal den gleichen Nenner, aber 3 ist kein Schnittpunkt von f und g , was mache ich hier falsch ?

PS: Die Integrale habe ich direkt so aufgeschrieben , die Rechnung ist aber richtig , hab es mit dem nicht zugelassenen Taschenrechner ausgerechnet.

        
Bezug
Welche Fläche ist richtig ?: Antwort
Status: (Antwort) fertig Status 
Datum: 20:18 Mo 12.03.2012
Autor: barsch

Hi,


> Die Graphen von f und g haben 3 oder mehr Schnittpunkte.
> Bestimmen Sie den Inhalt der von den Graphen von f und g
> eingeschlossenen Flächen
>  Hallo , ich habe zwei Funktionen
>  
> f(x) = [mm]x^{3}[/mm] - 4x
>  g(x) = [mm]3x^2[/mm]
>  
>
> Schnittpunkte :
>  
> f(x) = g(x)
>
> [mm]x^{3}[/mm] - 4x = [mm]3x^2[/mm]
>  
> [mm]x^{3}[/mm] - [mm]3x^{2}[/mm] -4x = 0
>  
> x( [mm]x^2[/mm] - 3x -4 ) = 0
>  
> [mm]x_1[/mm] = 0 , [mm]x_2[/mm] = 4 , [mm]x_3[/mm] = -1

okay

> Erste Teilfläche :
>  
> [mm]\integral_{-1}^{0}{f(x)- g(x) dx}[/mm] = [mm]\bruch{3}{4}[/mm]

du sagst, die Integrale sind korrekt, weil du mit TR gerechnet hast - deswegen habe ich das auch nicht nachgerechnet.

Das stimmt, denn das erste Teilstück, dass von den Graphen eingeschlossen wird, liegt im Intervall [-1;0].


>  
> Das ist der Wert der ersten Teilfläche.



> Wenn ich jetzt für die zweite Integrationsgrenze 0 und 4
> wähle.
>  
> [mm]\integral_{0}^{4}{f(x)-g(x) dx}[/mm] bekomme ich 32 raus ,

Jetzt habe ich es auch mal mit nem Progi zeichnen lassen. Der Wert der Teilfläche ist tatsächlich 32 (positiv). So, wie du das rechnest f(x)-g(x) kommt aber -32 raus. Du musst aufpassen: Immer die "größere" Funktion von der "kleineren" (Formulierung natürlich mathematisch nicht einwandfrei, aber du weißt, was ich meine) abziehen. Und es ist eben [mm]g(x)\ge{f(x)}[/mm] für alle x aus dem Intervall 0 bis 4.

> müssen die Ergebnisse der Teilflächen nicht immer den
> gleichen Nenner haben ?

Nein! - Wie kommst darauf?  

> Wenn ich aber statt [mm]\integral_{0}^{4}{f(x)-g(x) dx}[/mm] ,
>  [mm]\integral_{0}^{3}{f(x)-g(x) dx}[/mm] rechne bekomme ich
> [mm]|-\bruch{99}{4}[/mm] raus.

Ach, du meinst jetzt wegen des selben Nenners. Das mit demselben Nenner ist Zufall.

> Dann haben sie aufeinmal den gleichen Nenner, aber 3 ist
> kein Schnittpunkt von f und g , was mache ich hier falsch ?

Der Nenner muss nicht gleich sein.
Du musst wirklich die komplette Fläche berechnen, also bis x=4.

Vielleicht habt ihr das in der Schule immer auf einen Nenner gebracht, um besser rechnen zu können.

[mm]32=\bruch{4*32}{4}=\bruch{128}{4}[/mm]

Dann ist die insgesamt eingeschlossene Fäche: [mm]\bruch{3}{4}+\bruch{128}{4}=\bruch{131}{4}[/mm]




> PS: Die Integrale habe ich direkt so aufgeschrieben , die
> Rechnung ist aber richtig , hab es mit dem nicht
> zugelassenen Taschenrechner ausgerechnet.

Gruß
barsch



Bezug
                
Bezug
Welche Fläche ist richtig ?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:23 Mo 12.03.2012
Autor: pc_doctor

Ja , genau [mm] \bruch{131}{4} [/mm] habe ich auch raus.

Das hat mich gewundert , denn bei den vorherigen Aufgaben , hatte ich 3 Teilflächen und IMMER kam der gleiche Nenner , das war also Zufall , ne ?

Also stimmt das , was ich gesagt habe , dass die Ergebnisse einer Teilfläche den gleichen Nenner haben müssen , nicht ?

Bezug
                        
Bezug
Welche Fläche ist richtig ?: Antwort
Status: (Antwort) fertig Status 
Datum: 20:28 Mo 12.03.2012
Autor: DM08

Nein, natürlich nicht. Aber du kannst auch, wenn du 4 rausbekommst es zu : [mm] \bruch{16}{4} [/mm] machen, dann hast du wieder den gleichen Nenner ;)

Gruß

Bezug
                                
Bezug
Welche Fläche ist richtig ?: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:29 Mo 12.03.2012
Autor: pc_doctor

Alles klar , vielen Dank an alle. !

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]