matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenComputergraphikWasserscheidenalgorithmus
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Computergraphik" - Wasserscheidenalgorithmus
Wasserscheidenalgorithmus < Computergraphik < Praktische Inform. < Hochschule < Informatik < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Computergraphik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wasserscheidenalgorithmus: Aufgabe
Status: (Frage) überfällig Status 
Datum: 00:01 Sa 10.02.2007
Autor: Sue20

Aufgabe
Realisieren Sie im Binärbild

S = [mm] \pmat{ 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 } [/mm]
(wobei 0 = weiß, 1 = schwarz)
unter Verwendung des Distanzmaßes [mm] d_{\infty} [/mm] die Segmentierung mittels Distanztransformation und Wasserscheidenalgorithmus!

Nach Anwendung von [mm] d_{\infty} [/mm] = [mm] max(|i_{2}-i_{1}|, |j_{2}-j_{1}|) [/mm] auf S folgt:

D = [mm] \pmat{ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 2 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 2 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 } [/mm]

z.B. max(0,1) = 1
max(1,1) = 1

Meine Frage:
Wie kommt man mit dieser Formel auf genau dieses D?

Hier der Ablauf der Distanztransformation:

1. Binarisierung mit einem Schwellwert, so dass die zu segmentisierenden Teile schwarz sind --> ist mir klar

2. Bestimmung der Distanzen, gemäß [mm] d_{i}, i=1,2,\infty [/mm] aller schwarzen Bildpunkte zum nächstgelegenen weißen Bildpunkt -> Bild D --> Wie geht man hier Schritt für Schritt vor, so dass man auf obiges Bild D kommt???

3. Realisierung des Wasserscheidenalgorithmus für das Bild der negativen Distanzen, wobei zusätzlich den weißen Bildteilen des Binärbildes die kleinste negative Distanz zugeordnet wird

Das Bild der negativen Distanzen (Ausgangsmatrix für Wasserscheidenalgorithmus) ist:

-D = [mm] \pmat{ -2 & -2 & -2 & -2 & -2 & -2 & -2 \\ -2 & -1 & -1 & -1 & -2 & -2 & -2 \\ -2 & -1 & -2 & -1 & -2 & -2 & -2 \\ -2 & -1 & -1 & -1 & -1 & -1 & -2 \\ -2 & -2 & -2 & -1 & -2 & -1 & -2 \\ -2 & -2 & -2 & -1 & -1 & -1 & -2 \\ -2 & -2 & -2 & -2 & -2 & -2 & -2 } [/mm]   --> ist mir auch klar

Ergebnis des Wasserscheidenalgorithmus:

S = [mm] \pmat{ 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 & 1 & 1 & 1 \\ 1 & 0 & 2 & 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 & 3 & 0 & 1 \\ 1 & 1 & 1 & 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 } [/mm]

Der Wasserscheidenalgorithmus bestimmt mittels morphologischer Operationen die Gradlinien u. damit die dazwischen liegenden Segmente. Im Ergebnis des Wasserscheidenalgorithmus erhält man ein segmentiertes Bild, in dem die Gradlinien den Wert 0 haben und die Pixel in den Segmenten jeweils gleiche Werte beginnend mit 1 haben.

Ist es also so, dass die Gradlinien beim größten negativen Wert im Bild -D der negativen Distanzen (in diesem Fall -1) sind? Den Rest habe ich verstanden.


Für jede Hilfe bin ich sehr dankbar!

MfG Susann

        
Bezug
Wasserscheidenalgorithmus: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:20 Mo 12.02.2007
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Computergraphik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]