matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikWahrscheinlichkeitstheorie
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Stochastik" - Wahrscheinlichkeitstheorie
Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wahrscheinlichkeitstheorie: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:56 So 28.04.2013
Autor: user0009

Aufgabe
Eine Zufallsvariable X ist definiert durch die Verteilungsfunktion

[mm] F_{X}(x)= \begin{cases} 0, & \mbox{für } x<0 \\ K , & \mbox{für } 0 \le x < 1 \\ K+1/2(x-1) , & \mbox{für }1 \le x < 2 \\ K+1/2 , & \mbox{für }2 \le x < 3 \\ 1 , & \mbox{für }x \ge 3 \end{cases} [/mm]

(a) Zeiche [mm] F_{X}(x) [/mm] und die Dichtefunktion [mm] f_{X}(x)! [/mm]
(b) Finde den Bereich in dem K möglich ist.
(c) Was ist die Wahrscheinlichkeit für 0 [mm] \le [/mm] X < 1?
(d) Was ist die Wahrscheinlichkeit für 0 [mm] \le [/mm] X < 2, als Funktion von K?
(e) Was ist die Wahrscheinlichkeit für X [mm] \ge [/mm] 3?

Nun ich habe zu allen eine Frage, da ich mich mit der Wahrscheinlichkeitsrechnung nicht so gut auskenne, jedoch habe ich versucht es zu lösen.

(a) Für [mm] F_{X}(x) [/mm] hätte ich die Werte einfach normal eingezeichnet in ein Diagramm. Auf der x-Achse die x-Werte und auf der Y-Achse die K Werte.
Für die Dichtefunktion hätte ich die K Werte differenziert und in ein Diagramm eingezeichnet.

[mm] f_{X}(x)= \begin{cases} 0, & \mbox{für } x<0 \\ 1 , & \mbox{für } 0 \le x < 1 \\1 , & \mbox{für }1 \le x < 2 \\1 , & \mbox{für }2 \le x < 3 \\ 1 , & \mbox{für }x \ge 3 \end{cases} [/mm]

(b) Bei den Möglichen Werte weiß ich nicht wie ich diese Berechnen soll.
(c) P(0 < X [mm] \le [/mm] 1) = F(1)-F(0) = K- 0 = K%
(d) P(0 [mm] \le [/mm] X <2) = F(2)-F(0) = K+1/2(x-1)-0 = k+0,5%
(e) P(X [mm] \ge [/mm] 2) = F(2)= K+1/2%

Ich habe nun leider keine Ahnung ob ich das Richtig gerechnet habe oder ob ich einige grundsätzlich Falsch angegangen bin. Bin für jeden Tipp und Hilfe dankbar.

        
Bezug
Wahrscheinlichkeitstheorie: Antwort
Status: (Antwort) fertig Status 
Datum: 19:12 So 28.04.2013
Autor: abakus


> Eine Zufallsvariable X ist definiert durch die
> Verteilungsfunktion

>

> [mm]F_{X}(x)= \begin{cases} 0, & \mbox{für } x<0 \\ K , & \mbox{für } 0 \le x < 1 \\ K 1/2(x-1) , & \mbox{für }1 \le x < 2 \\ K 1/2 , & \mbox{für }2 \le x < 3 \\ 1 , & \mbox{für }x \ge 3 \end{cases}[/mm]

>

> (a) Zeiche [mm]F_{X}(x)[/mm] und die Dichtefunktion [mm]f_{X}(x)![/mm]
> (b) Finde den Bereich in dem K möglich ist.
> (c) Was ist die Wahrscheinlichkeit für 0 [mm]\le[/mm] X < 1?
> (d) Was ist die Wahrscheinlichkeit für 0 [mm]\le[/mm] X < 2, als
> Funktion von K?
> (e) Was ist die Wahrscheinlichkeit für X [mm]\ge[/mm] 3?
> Nun ich habe zu allen eine Frage, da ich mich mit der
> Wahrscheinlichkeitsrechnung nicht so gut auskenne, jedoch
> habe ich versucht es zu lösen.

>

> (a) Für [mm]F_{X}(x)[/mm] hätte ich die Werte einfach normal
> eingezeichnet in ein Diagramm. Auf der x-Achse die x-Werte
> und auf der Y-Achse die K Werte.
> Für die Dichtefunktion hätte ich die K Werte
> differenziert und in ein Diagramm eingezeichnet.

>

> [mm]f_{X}(x)= \begin{cases} 0, & \mbox{für } x<0 \\ 1 , & \mbox{für } 0 \le x < 1 \\1 , & \mbox{für }1 \le x < 2 \\1 , & \mbox{für }2 \le x < 3 \\ 1 , & \mbox{für }x \ge 3 \end{cases}[/mm]

Hallo,
diese Ableitungen sind fast alle falsch. Das einzige Intervall mit dem Ableitungswert 1 ist das Intervall von 2 bis 3.

Das wesentliche passiert aber nicht IN den Intervallen, sondern an den Intervallgrenzen.
Gruß Abakus 
>

> (b) Bei den Möglichen Werte weiß ich nicht wie ich diese
> Berechnen soll.
> (c) P(0 < X [mm]\le[/mm] 1) = F(1)-F(0) = K- 0 = K%
> (d) P(0 [mm]\le[/mm] X <2) = F(2)-F(0) = K+1/2(x-1)-0 = k+0,5%
> (e) P(X [mm]\ge[/mm] 2) = F(2)= K+1/2%

>

> Ich habe nun leider keine Ahnung ob ich das Richtig
> gerechnet habe oder ob ich einige grundsätzlich Falsch
> angegangen bin. Bin für jeden Tipp und Hilfe dankbar.

Bezug
                
Bezug
Wahrscheinlichkeitstheorie: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:00 So 28.04.2013
Autor: user0009

Ich habe gerade gesehen, dass ich einen Angabefehler gemacht habe. zwischen K's gehört ein + rein, dann stimmen die Ableitungen wieder. Sorry ist mein Fehler. Wie schaut es mit den anderen Antworten aus? Sind diese richtig?

Bezug
                        
Bezug
Wahrscheinlichkeitstheorie: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:40 So 28.04.2013
Autor: abakus


> Ich habe gerade gesehen, dass ich einen Angabefehler
> gemacht habe. zwischen K's gehört ein + rein, dann stimmen
> die Ableitungen wieder.

Nein. Die Ableitung einer Konstante (und jeder Term ohne x ist eine Konstante) ist immer Null.

> Sorry ist mein Fehler. Wie schaut
> es mit den anderen Antworten aus? Sind diese richtig?

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]