Wahrscheinlichkeitstheorie < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Die Zufallsvariable X ist N [mm] (\mu,15)-verteilt. [/mm] Wie groß darf [mm] \mu [/mm] höchstens sein, damit P(X>40)<0,05 gilt? |
Hallo zusammen,
habe vor ein paar Tagen eine Vorlesung in komprimierter Form gehört. Nun fällt es mir noch schwer mich innerhalb dieser Materie zu bewegen. Wie gehe ich an solch eine Aufgabe ran?
Vielen Dank für die Hilfe.
Gruß
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 18:41 Di 30.03.2010 | Autor: | Blech |
Hi,
> Die Zufallsvariable X ist N [mm](\mu,15)-verteilt.[/mm] Wie groß
> darf [mm]\mu[/mm] höchstens sein, damit P(X>40)<0,05 gilt?
> Hallo zusammen,
>
> habe vor ein paar Tagen eine Vorlesung in komprimierter
> Form gehört. Nun fällt es mir noch schwer mich innerhalb
> dieser Materie zu bewegen. Wie gehe ich an solch eine
> Aufgabe ran?
Schau Dir das Thema Quantile nochmal an. Hier wird relativ geradlinig (1 kleine Umformung - bzw. 2, wenn Du nur die Quantile der Standardnormalverteilung verwenden darfst) nach einer gefragt.
ciao
Stefan
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 19:48 Di 30.03.2010 | Autor: | gfm |
> Die Zufallsvariable X ist N [mm](\mu,15)-verteilt.[/mm] Wie groß
> darf [mm]\mu[/mm] höchstens sein, damit P(X>40)<0,05 gilt?
> Hallo zusammen,
>
Eine Zufallsvariable [mm]X[/mm] ist eine Funktion auf einem Wahrscheinlichkeitsraum (auch W-Raum) [mm](\Omega, \Mathcal{A}, P)[/mm]. In dem W-Raum "lebt" der Zufall. [mm]\Omega[/mm] ist eine Menge, [mm]\Mathcal{A}[/mm] eine Menge von Teilmengen (auch Ereignisse genannt) und [mm]P[/mm] ist eine Mengenfunktion [mm]P:\mathcal{A}\to [0,1][/mm], die den Ereignissen eine Zahl aus [0,1] zuordnet (ihre Wahrscheinlichkeit).
Diese Konstruktion soll den Zufall beschreiben und dient der exakten mathematischen Definition der W-Theorie. In der Anwendung ist der Zufall nicht direkt der Beobachtung zugänglich, sondern Vorgänge, die durch diesen Zufall gesteuert werden bzw, die von dem Zufall abhängen.
Das wird durch eine Zufallsvariable ausgedrückt. Diese bildet den W-Raum z.B. in die rellen Zahlen ab, [mm]X:\Omega\to \IR[/mm], und zwar so, dass man die Wahrscheinlichkeit, dass ein Wert in einer Teilmenge [mm]B\subseteq\IR[/mm] realisiert wird, mit [mm]P(\{\omega\in\Omega|X(\omega)\in B\})[/mm] bestimmt werden kann.
Für [mm]\{\omega\in\Omega|X(\omega)\in B\}[/mm] schreibt man kürzer [mm]\{X\in B\}[/mm]. Wenn [mm]B[/mm] die einfache Form [mm](-\infty,t][/mm] hat, nennt man [mm]F_X(t):=P(\{X\in (-\inty,t]\}):\IR\to [0,1][/mm] die Verteilungsfunktion von [mm]X[/mm]. Sie gibt die Wahrscheinlichkeit an, dass ein Wert kleiner oder gleich [mm]t[/mm] realisiert wird.
Bezüglich [mm]F_X(t)[/mm] kann man im Stieltjeschen Sinne integrieren: [mm]\integral_B g(t)dF_X(t)[/mm]. Im Gegensatz zum üblichen "dt", welches eine konstante Wahrscheinlichkeits-"dichte" längs der t-Achse bedeutet, vermittelt [mm]F_X[/mm] eine variable Wahrscheinlichkeits-"dichte". Wenn [mm]F_X(t)[/mm] differenzierbar ist, wird daraus ein normales Integral [mm]\integral_B g(t)F'_X(t)dt= \integral_B g(t)f_X(t)dt[/mm] mit der Wahrscheinlichkeitsdichte [mm]f_X=\frac{dF_X}{dt}[/mm].
Der Erwartungswert [mm]E(X)[/mm] einer ZV ist definiert durch [mm]\mu:=E(X):=\integral_{\IR}tdF_X(t)[/mm] und die Varianz [mm]VAR(X)[/mm] durch [mm]\sigma^2:=VAR(X):=\integral_{\IR}(t-E(X))^2dF_X(t)[/mm].
Normalverteilungen sind durch Ihr [mm]\mu[/mm] und [mm]\sigma[/mm] vollständig bestimmt. Ihre Dichten sind gegeben durch:
[mm]f_{\mu,\sigma}(t)=\frac{1}{\wurzel{2\pi\sigma^2}}e^{-\frac{1}{2}(\frac{t-\mu}{\sigma})^2}[/mm]
und [mm]F_{\mu,\sigma}(t)[/mm] durch [mm]F_{\mu,\sigma}(t)=\integral_{-\infty}^{t}\frac{1}{\wurzel{2\pi\sigma^2}}e^{-\frac{1}{2}(\frac{s-\mu}{\sigma})^2}ds[/mm]
Leider kann man keine elementare Stammfunktion angeben. Für die Praxis verwendet man
[mm]\Phi(z)=\frac 1{\sqrt{2\pi}} \cdot \int_{-\infty}^z \mathrm e^{-\frac 12 t^2} \mathrm{d}t[/mm] und berechnet [mm]F_{\mu,\sigma}(t)=\Phi(\frac{t-\mu}{\sigma})[/mm].
[mm]\Phi[/mm] liegt z.B. in Tabellenform, in guten Taschenrechnern oder z.B. in Excel als Funktion vor.
[mm] \mu [/mm] soll nun beschränkt werden durch die Bedingung
[mm] P(\{X_{\mu,\sigma}>a\})<\alpha [/mm] (mit [mm] \sigma=15, [/mm] a=40, [mm] \alpha=0.05)
[/mm]
Also: Wie groß darf [mm]\mu[/mm] (der Mittelwert) höchstens sein, damit das Risiko [mm]\alpha[/mm], dass in Folge der Schwankungen um den Mittelwert der Wert a durch [mm]X_{\mu,\sigma}[/mm] überschritten wird, kleiner als [mm]\alpha[/mm] ist?
Oder anders herum:
Wie groß darf [mm]\mu[/mm] (der Mittelwert) höchstens sein, damit die Sicherheit, dass trotz der Schwankungen um den Mittelwert, [mm]X_{\mu,\sigma}[/mm] kleiner oder gleich dem Wert [mm]a[/mm] bleibt, größer als [mm]1-\alpha[/mm] ist?
[mm]P(\{X_{\mu,\sigma}>a\})=P(\Omega\backslash\{X_{\mu,\sigma}\le a\})=P(\Omega)-P(\{X_{\mu,\sigma}\le a\})=1-F_{\mu,\sigma}(a)=1-\Phi(z)<\alpha[/mm]
Oder: [mm]1-\alpha<\Phi(z)[/mm] mit [mm]z=\frac{a-\mu}{\sigma}[/mm]
[mm]\Phi(z)[/mm] mit [mm]z=\frac{a-\mu}{\sigma}[/mm] ist die Wahrscheinlichkeit, dass ein Wert kleiner oder gleich [mm]a[/mm] realisiert wird.
Nun suchst du ein [mm]z[/mm] so, dass möglichst genau [mm]1-\alpha=\Phi(z)[/mm] gilt. Nenne es [mm]z_{1-\alpha}[/mm]. Da [mm]\Phi[/mm] monoton steigend ist, muss gelten [mm]z>z_{1-\alpha}[/mm] oder [mm]a-\sigma*z_{1-\alpha}>\mu[/mm]
Manche Taschenrechner haben auch die inverse [mm]\Phi[/mm]-Funktion (Excel: STANDNORMINV). Dann berechnest Du [mm]z_{1-\alpha}:=\Phi^{-1}(1-\alpha)[/mm] (das [mm](1-\alpha)[/mm]-Quantil)
LG
gfm
|
|
|
|