matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStochastikWahrscheinlichkeitsrechnung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Stochastik" - Wahrscheinlichkeitsrechnung
Wahrscheinlichkeitsrechnung < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wahrscheinlichkeitsrechnung: "Aufgabe"
Status: (Frage) beantwortet Status 
Datum: 07:44 Do 15.07.2010
Autor: moselfeuer

Aufgabe
Das Organisationskomittee einer lokalen Festlichkeit vereinbart mit dem Partyservice den Teilnehmern der Veranstaltung drei Menüs zu 3,4 und 8 Euro anzubieten. Aus Erfahrung weiß man, dass die Hälfte der Gäste sich für das 4-Euro Menü entscheiden wird, 35 % für das 3-Euro Menü und das Luxusmenü von den verbleibenden 15 % gewählt wird. Man nimmt an, dass die Gäste sich kaum wechselseitig beeinflussen und stuft deshalb ihr verhalten als unabhängig ein. Welcher Mindestumsatz wird dann mit einer Wahrscheinlichkeit von 95 % vereinnahmt, wenn a) 500 und b) 1000 Teilnehmer kommen. (Hinweis: Betrachten Sie den durchschnittlichen Umsatz pro Teilnehmer)

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


Hallo
Ich steh irgendwie auf dem Schlauch. Kann mir bitte einer sagen wie ich bei dieser Aufgabe vorgehe...
Danke im Voraus!

        
Bezug
Wahrscheinlichkeitsrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:42 Do 15.07.2010
Autor: DesterX

Hallo Moselfeuer.

Deine Verteilung kannst du dir ja aus der Aufgabe konstruieren,
nämlich:
$P(X=3)=0.35$,
$P(X=4)=0.5$,
$P(X=8)=0.15$.
Berechne nun den Erwartungswert [mm] $\mu$, [/mm] sowie die Standardabweichung [mm] $\sigma$. [/mm] (Zur Probe: Ich erhalte [mm] $\mu=4,25$ [/mm] und [mm] $\sigma \approx [/mm] 1.64$)

Nun führst du "das Experiment" n-mal durch (zB $n=500$), wobei jeder "Versuch" unabhängig(nach Aufgabe), identisch verteilt ist.
Uns interessiert die Summenverteilung [mm] $S_n=X_1+\ldots+X_n$ [/mm] (der Gesamtumsatz) und zwar soll gelten: [mm] $P(S_n \ge [/mm] k) =0.95$ bzw. $1- [mm] P(S_n [/mm] < k) =0.95$.

Da die Konstruktion der Summenverteilung recht aufwändig wäre, kommt uns der zentrale Grenzwertsatz entgegen, dessen Voraussetzungen hier erfüllt sind.
Und zwar verhält sich [mm] $P(Z_n \le [/mm] k)$ mit [mm] $Z_n [/mm] = [mm] \frac{S_n - n \mu}{\sigma \sqrt{n}}$ [/mm] in etwa wie die Standardnormalverteilung [mm] $\Phi(k). [/mm]  Kommst du nun alleine weiter?

Viele Grüße, Dester

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]