matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitstheorieWahrscheinlichkeit P(X<Y)
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Wahrscheinlichkeitstheorie" - Wahrscheinlichkeit P(X<Y)
Wahrscheinlichkeit P(X<Y) < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wahrscheinlichkeit P(X<Y): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:56 So 23.03.2014
Autor: wilmi

Aufgabe
Hallo, ich habe eine generelle Verständnisfrage:
Gegeben: Zwei unabhängige Zufallsvariablen X und Y und die gemeinsamen Dichten [mm] f_X(x) [/mm] und [mm] f_Y(x) [/mm] beide auf dem Intervall [0, [mm] \infty] [/mm]

Gesucht:

1. Die gemeinsame Dichte

2. Die Wahrscheinlichkeit für X<Y

Meine Fragen:

zu 1. :Dort würde ich einfach die beiden Dichten [mm] f_X(x) [/mm] und [mm] f_Y(x) [/mm] multiplizieren, wobei ich vorher die Variable x von [mm] f_Y(x) [/mm] durch y ersetze.

zu 2. : Dort würde ich ein doppeltes Integral aufstellen und dann lösen. Problem habe ich mit den Grenzen und der Reihenfolge der Integrale:

[mm] \int_0^{\infty}\int_y^{\infty} f_X(x) f_Y(x) [/mm] dxdy oder
[mm] \int_0^{\infty}\int_x^{\infty} f_X(x) f_Y(x) [/mm] dydx  oder
[mm] \int_0^{\infty}\int_0^{y} f_X(x) f_Y(x) [/mm] dxdy oder
[mm] \int_0^{\infty}\int_0^{x} f_X(x) f_Y(x) [/mm] dydx.

Bin da ziemlich ratlos und sehr dankbar für eine Erläuterung bzw. Hilfestellung.

Beste Grüße wilmi



        
Bezug
Wahrscheinlichkeit P(X<Y): Antwort
Status: (Antwort) fertig Status 
Datum: 16:42 So 23.03.2014
Autor: luis52

Moin

> zu 1. :Dort würde ich einfach die beiden Dichten [mm]f_X(x)[/mm]
> und [mm]f_Y(x)[/mm] multiplizieren, wobei ich vorher die Variable x
> von [mm]f_Y(x)[/mm] durch y ersetze.

[ok]

>  
> zu 2. : Dort würde ich ein doppeltes Integral aufstellen
> und dann lösen. Problem habe ich mit den Grenzen und der
> Reihenfolge der Integrale:
>  
> [mm]\int_0^{\infty}\int_y^{\infty} f_X(x) f_Y(x)[/mm] dxdy oder

[notok]

Warum beherzigst du nicht, was du oben geschrieben hast? Z.B.

$ [mm] \int_0^{\infty}\int_x^{\infty} f_X(x) f_Y(\red{y}) \, dy\,dx$ [/mm]

Bezug
                
Bezug
Wahrscheinlichkeit P(X<Y): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:50 So 23.03.2014
Autor: wilmi

Hallo Luis,
danke für deine Antwort. Und für den Hinweis, dass ich bei der Integration auch x durch y ersetzen muss. Und wie sieht es mit den Grenzen und der Reihenfolge der Intergration aus? Woher weiß ich ob mein 2. Integral von x bzw. y nach [mm] \infty [/mm] läuft oder von 0 bis x bzw. y ?

Lg Wilmi

Bezug
                        
Bezug
Wahrscheinlichkeit P(X<Y): Antwort
Status: (Antwort) fertig Status 
Datum: 16:53 So 23.03.2014
Autor: luis52


> Hallo Luis,
>  danke für deine Antwort. Und für den Hinweis, dass ich
> bei der Integration auch x durch y ersetzen muss. Und wie
> sieht es mit den Grenzen und der Reihenfolge der
> Intergration aus? Woher weiß ich ob mein 2. Integral von x
> bzw. y nach [mm]\infty[/mm] läuft oder von 0 bis x bzw. y ?
>  
> Lg Wilmi

Das ist wurscht. ;-) Probier's aus, es kommt eine (naheliegende) Zahl heraus.


Bezug
                                
Bezug
Wahrscheinlichkeit P(X<Y): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:29 So 23.03.2014
Autor: wilmi

Hallo Luis,
ich habe jetzt mal [mm] \int_0^\infty \int_x^\infty [/mm] exp(-x)*2*exp(-2y) dydx und [mm] \int_0^\infty \int_y^\infty [/mm] exp(-x)*2*exp(-2y) dxdy ausgerechnet. beim ersten kommt $$1/3$$ und beim zweiten $$2/3$$ heraus. Also sind die Integrale nicht gleich (wenn ich mich nicht verrechnet habe.)
Auch ist mir immer noch nicht ganz klar, ob ich die Grenze 0 oder die Grenze [mm] \infty [/mm] durch x oder y ersetze, wenn ich die Wahrscheinlichkeit ausrechnen will das X>Y ist.

LG wilmi

Bezug
                                        
Bezug
Wahrscheinlichkeit P(X<Y): Antwort
Status: (Antwort) fertig Status 
Datum: 18:01 So 23.03.2014
Autor: luis52

Gut, die Anmerkung mit der konkreten Zahl ($1/2_$) stimmt  dann, wenn $X$ und $Y$ identisch verteilt sind, was du jedoch nicht voraussetzen kannst. Aber irgendwelche Verteilungen zu verwenden ist nicht legitim.

Ich habe mir noch einmal deine Vorschlaege zur Berechnung von von $P(X<Y$) angeschaut:


> $ [mm] \int_0^{\infty}\int_y^{\infty} f_X(x) f_Y(y) [/mm]  dxdy$ oder

[notok]

> $ [mm] \int_0^{\infty}\int_x^{\infty} f_X(x) f_Y(y) [/mm] dydx$  oder

[ok]

>$ [mm] \int_0^{\infty}\int_0^{y} f_X(x) f_Y(y) [/mm]  dxdy$ oder

[ok]

> $ [mm] \int_0^{\infty}\int_0^{x} f_X(x) f_Y(y) [/mm]  dydx$.

[notok]







Bezug
                                                
Bezug
Wahrscheinlichkeit P(X<Y): Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:09 So 23.03.2014
Autor: wilmi

ok, vielen Dank für deine Hilfe.

Beste Grüße Wilmi

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]