matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitsrechnungWahrscheinlichkeit IV
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Wahrscheinlichkeitsrechnung" - Wahrscheinlichkeit IV
Wahrscheinlichkeit IV < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wahrscheinlichkeit IV: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:28 Mo 04.06.2012
Autor: Sonnenblume2401

Aufgabe
Hallo an alle!

Jemand spielt bei zwei Gewinnspielen A und B mit. Die Gewinnchancen bei A betragen [mm] $\bruch{50}{100}$ [/mm] und bei B [mm] $\bruch{60}{100}$. [/mm]
Wie gross ist die Wahrscheinlichkeit genau einen Gewinn zu machen?

Habs mal so probiert:
E="genau einen Gewinn [mm] machen"=$\{A\overline{B},\ \overline{B}A,\ \overline{A}B,\ B\overline{A}\}$ [/mm]
[mm] $P(E)=2\cdot \bruch{50}{100}\cdot \bruch{40}{100}+2\cdot \bruch{50}{100}\cdot \bruch{60}{100}=1$ [/mm]

Das kann wohl nicht stimmen, aber warum nicht? Es kommt das richtige Ergebnis heraus wenn ich [mm] E=$\{A\overline{B},\ \overline{A}B\}$ [/mm] nehme. Aber was im Text sagt mir, dass die Menge E nur diese zwei enthàlt?

Danke danke an alle.

        
Bezug
Wahrscheinlichkeit IV: Antwort
Status: (Antwort) fertig Status 
Datum: 09:34 Mo 04.06.2012
Autor: Diophant

Hallo,

> Hallo an alle!
>
> Jemand spielt bei zwei Gewinnspielen A und B mit. Die
> Gewinnchancen bei A betragen [mm]\bruch{50}{100}[/mm] und bei B
> [mm]\bruch{60}{100}[/mm].
> Wie gross ist die Wahrscheinlichkeit genau einen Gewinn zu
> machen?
> Habs mal so probiert:
> E="genau einen Gewinn machen"=[mm]\{A\overline{B},\ \overline{B}A,\ \overline{A}B,\ B\overline{A}\}[/mm]
>
> [mm]P(E)=2\cdot \bruch{50}{100}\cdot \bruch{40}{100}+2\cdot \bruch{50}{100}\cdot \bruch{60}{100}=1[/mm]
>
> Das kann wohl nicht stimmen, aber warum nicht? Es kommt das
> richtige Ergebnis heraus wenn ich E=[mm]\{A\overline{B},\ \overline{A}B\}[/mm]
> nehme. Aber was im Text sagt mir, dass die Menge E nur
> diese zwei enthàlt?

Die Formulierung, dass nach der Wahrscheinlichkeit  für genau einen Gewinn gesucht ist, sagt dir das. Entferne die Vorfaktoren aus deiner obigen Rechnung (sie beruhen auf einem Irrtum: dein Ereignis enthält jeweils das gleiche Element doppelt!), und dann passt es.


Gruß, Diophant

Bezug
                
Bezug
Wahrscheinlichkeit IV: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:39 Mo 04.06.2012
Autor: Sonnenblume2401

Danke Diophant.

Wenn ich aber zum Beispiel einen Korb mit 6 Bananen (Ba) und 4 Birnen (Bi) habe und ich die Wahrscheinlichkeit berechnen muss 1 Banane und 1 Birne zu ziehen dann ist [mm] $E=\{BiBa,\ BaBi\}$. [/mm] Warum auch hier nicht nur oder BiBa oder BaBi?
Was ist der Unterschied?

Bezug
                        
Bezug
Wahrscheinlichkeit IV: Antwort
Status: (Antwort) fertig Status 
Datum: 09:51 Mo 04.06.2012
Autor: Diophant

Hallo,

> Wenn ich aber zum Beispiel einen Korb mit 6 Bananen (Ba)
> und 4 Birnen (Bi) habe und ich die Wahrscheinlichkeit
> berechnen muss 1 Banane und 1 Birne zu ziehen dann ist
> [mm]E=\{BiBa,\ BaBi\}[/mm]. Warum auch hier nicht nur oder BiBa oder
> BaBi?
> Was ist der Unterschied?

Der Unterschied liegt in der Tatsache, dass es Bananen und Birnen gemeinsam in einem Korb liegen. D.h. es ist ein Zufallsexperiment, ob eine Banane oder eine Birne gezogen wird. Bei deiner Augangsfrage wird jedoch die Teilnahme an zwei Glücksspielen betrachtet, bei denen von vorhnerein klar ist, dass jedes Spiel genau einmal gespielt wird. Die Situation könnte man dann dem Früchtekorb ähnlicher machen, wenn man etwa sagen würde: ich spiele zweimal eines der Glücksspiele A oder B und entscheide jeweils zufällig (durch Münzurf, etc), welches von beiden. Dann könnte auch zweiaml A oder zweimal B gespielt werden und zumindest deine Ereignismenge aus dem Startbeitrag wäre dann richtig.


Gruß, Diophant

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]