matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikWahrscheinlichkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Stochastik" - Wahrscheinlichkeit
Wahrscheinlichkeit < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wahrscheinlichkeit: Rechenweg
Status: (Frage) beantwortet Status 
Datum: 19:35 Sa 09.08.2008
Autor: Christopf

Aufgabe
Ich habe diese Aufgabe in kein anderes Forum ins Netz gestellt
Nach einer Verschlüsselung sollen im verschlüsselten Text alle möglichen Bytes (die jeweils aus 8 Bit bestehen) die gleiche Wahrscheinlichkeit besitzen. Um dies zuüberprüfen wird für jedes Byte des verschlüsselten Zextes die Zahl [mm] x_{0} [/mm] der 0-Bits und und die Zahl [mm] x_{1} [/mm] der 1 Bits ermittelt. Daraus wird schließlich die Zufallsgröße Y = [mm] |x_{0}- x_{1}| [/mm] berechnet. Bestimmen Sie der Erwartungswert E(Y), die Streuung [mm] D^{2}(Y) [/mm] und die Entropie H(Y).

Geben Sie für eine exponentialverteilte Zufallsgröße mit dem Erwartungswert ET 015s die Verteilungsfunktion  und die Streuung an.

Danke im Voraus

        
Bezug
Wahrscheinlichkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 08:21 So 10.08.2008
Autor: Somebody


> Ich habe diese Aufgabe in kein anderes Forum ins Netz
> gestellt
>  Nach einer Verschlüsselung sollen im verschlüsselten Text
> alle möglichen Bytes (die jeweils aus 8 Bit bestehen) die
> gleiche Wahrscheinlichkeit besitzen.

Jedes der [mm] $2^8$ [/mm] Bytes soll die Wahrscheinlichkeit [mm] $2^{-8}$ [/mm] haben im verschlüsselten Text aufzutreten.

> Um dies zuüberprüfen
> wird für jedes Byte des verschlüsselten Zextes die Zahl
> [mm]x_{0}[/mm] der 0-Bits und und die Zahl [mm]x_{1}[/mm] der 1 Bits
> ermittelt. Daraus wird schließlich die Zufallsgröße Y =
> [mm]|x_{0}- x_{1}|[/mm] berechnet. Bestimmen Sie der Erwartungswert
> E(Y), die Streuung [mm]D^{2}(Y)[/mm] und die Entropie H(Y).

Dies offenbar für den Fall, dass nach der Verschlüsselung tatsächlich alle Bytes gleich wahrscheinlich sind.
Du beginnst am Besten damit, die Definitionen der gesuchten Grössen [mm] $\mathrm{E}(Y), \sigma^2(Y)$ [/mm] und [mm] $\mathrm{H}(Y)$ [/mm] hinzuschreiben. Die einzige verbleibende Schwierigkeit scheint mit dann allenfalls noch die Berechnung von [mm] $\mathrm{P}(Y=k)$ [/mm] zu sein. Dazu könntest Du berücksichtigen, dass

[mm]\mathrm{P}(Y=k)=\mathrm{P}(|x_0-x_1|=k)=\mathrm{P}(x_0-x_1=k)+\mathrm{P}(x_0-x_1=-k)=2\cdot\mathrm{P}(x_0-x_1=k)[/mm]

für [mm] $k=2,\ldots, [/mm] 8$.
Aus [mm] $x_0-x_1=k$ [/mm] folgt des weiteren, dass [mm] $x_0=4+\frac{k}{2}$ [/mm] sein muss. Das heisst: [mm] $\mathrm{P}(Y=k)$ [/mm] ist nur für gerade Zahlen [mm] $k=0,2,\ldots, [/mm] 8$ ungleich $0$. Als nächstes kannst Du versuchen, die Zahl der Bytes zu zählen, für die [mm] $x_0-x_1=k$ [/mm] ist ($k$ gerade). Tipp: Binomialkoeffizient. Danach solltest Du in der Lage sein, [mm] $\mathrm{P}(Y=k)$ [/mm] in allgemeiner Form hinzuschreiben:

[mm]\mathrm{P}(Y=k)=\begin{cases} \binom{8}{4}\cdot 2^{-8} &\text{für $k=0$}\\ \binom{8}{4+\frac{k}{2}}\cdot 2^{-7} & \text{für $k$ gerade, $>0$}\\ 0 &\text{sonst} \end{cases}[/mm]

Zur Kontrolle empfiehlt sich zu prüfen, ob die Summe [mm] $\sum_{k=0}^8\mathrm{P}(Y=k)$ [/mm] wie erwartet gleich $1$ ist.

>  Geben Sie für eine exponentialverteilte Zufallsgröße

$T$?

> mit
> dem Erwartungswert ET 015s

[mm] $\mathrm{E}(T)=15s$? [/mm] - Eigenartige Schreibweise: [mm] $\red{0}15s$, [/mm] eventuell Tippfehler.

> die Verteilungsfunktion  und die Streuung an.

Die Verteilungsfunktion einer exponentialverteilten Zufallsvariablen $T$ ist (bekanntlich)

[mm]F(t) := \mathrm{P}(T\leq t)=\begin{cases}1-\alpha\mathrm{e^{-\alpha t}} &\text{für $t\geq 0$}\\ 0 &\text{sonst}\end{cases}[/mm]

Und [mm] $\mathrm{E}(T)=\frac{1}{\alpha}$, $\sigma^2(T)=\frac{1}{\alpha^2}$. [/mm] Aus dem gegebenen Erwartungswert bestimmst Du also den Wert von [mm] $\alpha$. [/mm] Der Rest ist Einsetzen in (vermutlich) bekannte Formeln.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]