matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikWahrscheinlichkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Stochastik" - Wahrscheinlichkeit
Wahrscheinlichkeit < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wahrscheinlichkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:22 So 17.12.2006
Autor: butumba

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

Ich hoffe ihr könnt mir helfen:

An einer Wahl zwischen 2 Kandidaten A und B nehmen 1000000 Wähler teil.
Davon kennen 2000 den Kandidaten A aus Wahlkampfveranstaltungen und stimmen geschlossen für ihn.
Die übrigen 99800 Wähler sind mehr oder weniger unentschlossen und treffen ihre Entscheidung unabhängig voneinader durch Werfen einer fairen Münze.
Wie groß ist die Wahrscheinlichkeit p(A) eines Sieges von A?

Vielen Dank im voraus.

Lg Karin

        
Bezug
Wahrscheinlichkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 20:04 So 17.12.2006
Autor: Walde

Hi  Karin,

zunächst, du hast geschrieben es seien 1 Million Wähler, 2000 für ihn die restlichen 99800 unentschlossen. Da hast du dich irgendwo mit den Nullen vertan. Ich rechne mal mit 998000 unentschlossenen. Falls du andere Zahlen hast, kannst du es ja mit denen nochmal rechnen, der Weg bleibt der Gleiche.

Sei:

n=998000 die Anzahl der unentschlossenen Wähler,

X: Anzahl der Wähler, die für Kandidat A stimmen und

p=0,5 die W'keit, dass ein  unentschlossener für A stimmt.

A braucht zum Sieg insgesammt 500001 Stimmen. Von den 998000 Unentschlossenen genügen ihm 498001, da er ja 2000 schon sicher hat.

X ist binomialverteilt mit Parametern n und p. Da aber n*p*(1-p)>9 kann man X als nährungsweise normalverteilt annehmen. Das vereinfacht die Rechnung immens.

Dann ist nämlich [mm] Y:=\bruch{X-n*p}{\wurzel{n*p*(1-p)}} [/mm] standardnormalverteilt.

Gesucht ist:
[mm] P(X\ge498001)=1-P(X\le498000)=1-P(Y\le\bruch{498000-n*p}{\wurzel{n*p*(1-p)}}) [/mm]

Du musst nur noch einsetzen und in der Tabelle der Standardnormalverteilung nachkucken.

L G walde

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]