matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitstheorieWahrscheinlichkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Wahrscheinlichkeitstheorie" - Wahrscheinlichkeit
Wahrscheinlichkeit < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wahrscheinlichkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:25 Di 24.10.2006
Autor: stevarino

Aufgabe
Die Wahrscheinlichkeit eine Zielscheibe zu treffen, ist bei 3 Schützen [mm] \bruch{1}{6},\bruch{1}{4},\bruch{1}{3}. [/mm] Jeder schießt einmal auf die Scheibe.
a.)Bestimmen Sie die Wahrscheinlichkeit,daß genau einer trifft.
b.)Wie groß ist unter der Annahme, daß die Scheibe genau einmal getroffen wurde, die Wahrscheinlichkeit, daß der erste Mann sie getroffen hat?

Hallo

Wie geht man hier vor.
Die Wahrscheinlichkeit das der erste trifft ist [mm] \bruch{1}{6} [/mm] die das er nicht trifft ist [mm] \bruch{5}{6} [/mm]
das der zweite trifft [mm] \bruch{1}{4} [/mm] und das er nicht trifft [mm] \bruch{3}{4} [/mm]
das der dritte trifft [mm] \bruch{1}{3} [/mm] und das er nicht trifft [mm] \bruch{2}{3} [/mm]

Die Wahrscheinlichkeit das genau einer trifft wie jetzt weiter ist das 1-Wahrscheinlichkeit das 2 nicht treffen
Aber was ist die Wahrscheinlichkeit das 2 nicht treffen bin hier ziemlich ratlos?

Kann mir jemand helfen?

lg Stevo

        
Bezug
Wahrscheinlichkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 13:49 Di 24.10.2006
Autor: Timsge

a.) Ich würd mir erstmal überlegen, welche Fälle In Frage kommen...
Fall 1: xoo
Fall 2: oxo
Fall 3: oox (x = treffer, o=fehlschuss)
Jetzt musst die die Wahrscheinlichkeit des Falls 1, die des 2. und die des 3. Falles errechnen und addieren.

Wahrscheinlichkeit Fall 1: [mm] \bruch{1}{6} [/mm] * [mm] \bruch{3}{4} [/mm] * [mm] \bruch{2}{3} [/mm] =  [mm] \bruch{1}{12} [/mm]
Wahrscheinlichkeit Fall 1: [mm] \bruch{5}{6} [/mm] * [mm] \bruch{1}{4} [/mm] * [mm] \bruch{2}{3} [/mm] = [mm] \bruch{5}{36} [/mm]
Wahrscheinlichkeit Fall 1: [mm] \bruch{5}{6} [/mm] * [mm] \bruch{3}{4} [/mm] * [mm] \bruch{1}{3} [/mm] = [mm] \bruch{5}{24} [/mm]

Addiert man jetzt die 3 Wahrscheinlichkeiten erhält man die Gesammtwahrscheinlichkeit für den Fall, dass nur eine trifft, wenn meine Zahlen stimmen wären das [mm] \bruch{31}{72} [/mm]

b.) Diese Frage hast du eigentlich mit Fall 1 schon beantwortet.

Grüße, Timo



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]