Wahrsch. mit Teilbarkeit < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 06:19 Mo 16.07.2012 | Autor: | rollroll |
Aufgabe | Wie groß ist die Wahrscheinlichkeit, dass die Summer dreier natürlicher Zahlen, die man zufällig genannt bekommt, durch 3 teilbar ist? |
Wie kann ich denn diese Aufgabe angehen?
Also von n Zahlen sind ja immer n:3 durch teilbar und es enteht entweder Rest 0, Rest 1 oder Rest 2. Also W. 1/3? Hier habe ich allerdings nicht benutzt dass es um die Summe dreier Zahlen geht...
|
|
|
|
Hallo,
> Wie groß ist die Wahrscheinlichkeit, dass die Summer
> dreier natürlicher Zahlen, die man zufällig genannt
> bekommt, durch 3 teilbar ist?
> Wie kann ich denn diese Aufgabe angehen?
> Also von n Zahlen sind ja immer n:3 durch teilbar und es
> enteht entweder Rest 0, Rest 1 oder Rest 2. Also W. 1/3?
> Hier habe ich allerdings nicht benutzt dass es um die Summe
> dreier Zahlen geht...
Wenn es für die gegebenen Zahlen eine Obegrenze gäbe, dann wäre es vielleicht komplizierter, und dann wäre die Aufgabe auch unsauber gestellt. Denn es ist nicht gesagt, ob die Null hier den natürlichen Zahlen zugerechnet wird oder nicht.
So aber ist deine Argumantation IMO richtig: ab einer gewissen Zahl N, die entweder 0 oder 3 ist, hat jede Zahl die gleiche Chance, als Summe aufzutreten.
Vielleicht hatte der Autor der Aufgabe im Sinn, da irgendiwe mit deer Vertreilung einser Summe von gleichverteilten Zufallsvariablen zu argumentieren. Da fällt mir aber im Moment auch nichts vernünftiges ein, ich stelle daher den Status mal auf teilweise beantwortet.
Gruß, Diophant
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 10:51 Mo 16.07.2012 | Autor: | Diophant |
Hallo rollroll,
ich glaube, wir sind beide dem gleichen Denkfehler aufgesessen. Der Ansatz von M.Rex überzeugt mich doch sehr.
Gruß, Diophant
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 10:28 Mo 16.07.2012 | Autor: | M.Rex |
Hallo.
> Wie groß ist die Wahrscheinlichkeit, dass die Summer
> dreier natürlicher Zahlen, die man zufällig genannt
> bekommt, durch 3 teilbar ist?
> Wie kann ich denn diese Aufgabe angehen?
> Also von n Zahlen sind ja immer n:3 durch teilbar und es
> enteht entweder Rest 0, Rest 1 oder Rest 2. Also W. 1/3?
Nicht ganz. Betrachte bei den drei gegebenen Zahlen jeweils mal den Rest bei einer division durch Drei.
Haben alle drei Zahlen denselben Rest, ist die Summe auch durch drei teilbar.
Kommen die "Reste" 0, 1 und 2 je genau einmal vor, ist die Summe ebenfalls durch drei teilbar.
Also klappt das ganze lediglich dann nicht, wenn ein spezieller Rest genau zweimal auftaucht.
Und das kannst du mit der Binomialverteilung
[mm] $P(X=2)={3\choose2}\cdot\left(\frac{1}{3}\right)^{2}\cdot\left(1-\frac{1}{3}\right)^{3-2}$ [/mm] ganz hervorragend lösen.
Also gilt für die Wahrscheinlichkeit, dass die Summe nicht durch drei teilbar ist:
[mm] P=\red{3}\cdot{3\choose2}\cdot\left(\frac{1}{3}\right)^{2}\cdot\frac{2}{3}=\ldots
[/mm]
Die rot markierte drei kommt daher, dass es bei der Division durch drei ja 3 Reste gibt.
Nun betrachte noch die Gegenwahrscheinlichkeit, dann hast du die Wahrscheinlichkeit, dass die Summe durch drei teilbar ist.
Marius
|
|
|
|