matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitstheorieWahrsch.- / Vert. Funktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Wahrscheinlichkeitstheorie" - Wahrsch.- / Vert. Funktion
Wahrsch.- / Vert. Funktion < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wahrsch.- / Vert. Funktion: Tipp
Status: (Frage) beantwortet Status 
Datum: 20:19 Di 24.04.2007
Autor: StefanN

Aufgabe
gegeben sei folgende Dichtefunktion:
f(x) = 6x(1-x)

gesucht:

P(X > x) = 0,2

Hallo!

Ich bräuchte wiedermal eure Hilfe!

Wie berechne ich obiges Beispiel?

Meine Überlegungen:

F(x) = P(X <= x)

=> 1 - (F(x) = 0,8)

das haut aber irgendwie nicht so ganz hin ;-)

Danke schonmal im Vorraus für eure Hilfe!

        
Bezug
Wahrsch.- / Vert. Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 21:19 Di 24.04.2007
Autor: luis52

Moin Stefan,

bitte formuliere kuenftig deine Fragen  exakter.

Ich *vermute*, dass gilt [mm] $f\colon \IR\to \IR$ [/mm] mit $f(x)=6x(1-x)$ fuer $0<x<1$ und $f(x)=0$ sonst. Wenn dem so ist, so muss $x$ die Gleichung [mm] $0.2=P(X>x)=6\int_x^1t(1-t)\,dt$ [/mm] erfuellen. Mathematica liefert mir $x=0.7129$.

lg

Luis      

Bezug
                
Bezug
Wahrsch.- / Vert. Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:02 Mi 25.04.2007
Autor: StefanN

Entschuldigung für meine ungenaue Formulierung!

Aber du hast es völlig richtig verstanden:
gilt für 0 <= x <= 1
sonst f(x) = 0

Leider habe ich jetzt nicht so ganz verstanden wie du auf das Integral kommst. Könntest du mir bitte diesen Schritt etwas genauer erklären?

Bezug
                        
Bezug
Wahrsch.- / Vert. Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 10:02 Mi 25.04.2007
Autor: luis52

Kennst du den Zusammenhang zwischen Dichte und Verteilungsfunktion?
Besitzt die Verteilungsfunktion [mm] $F(x)=P(X\le [/mm] x)$ einer Zufallsvariablen
$X$ die Darstellung [mm] $F(x)=\int_{-\infty}^x f(t)\,dt$, [/mm] so heisst $f$ Dichte der Verteilung von $X$. Bei deiner Aufgabe kannst du also diese
Zusammenhang unterstellen. Dann ist

[mm] \begin{matrix} 0.2 & = &P(X>x)\\ & = &1-P(X\le x)\\ & = &1-\int_{-\infty}^x f(t)\,dt\\ & = &1-6\int_{0}^x t(1-t)\,dt\\ & = &6\int_{x}^1 t(1-t)\,dt\\ \end{matrix} [/mm]

Beachte, dass die Flaeche unter der Dichte 1 ist.

Uebrigens, zeichne dir die Dichte einmal und versuche, den Punkt $x$
einzuzeichnen. Du wirst sehen, dass die Situation der in der Aufgabe
aehnelt, die du in http://www.unimatheforum.de/read?t=253543
gestellt hast. Anscheinend nehmt ihr gerade die Bestimmung
von Prozentpunkten durch...    


lg Luis  

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]