matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis des R1Wahl geschickter Folge
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Analysis des R1" - Wahl geschickter Folge
Wahl geschickter Folge < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wahl geschickter Folge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:32 Do 25.08.2011
Autor: physicus

Hallo,


Meine Frage ist ziemlich grundlegender Natur und ich bin mir sicher, dass dies Analysis 1 ist, allerdings bin ich mir nicht sicher, ob meine Argumentation stimmt:

Nehmen wir an, dass wir [mm] l \in X^\* [/mm] der normale Dualraum. Aus der Definition der Norm sollte nun folgen, dass es ein Element [mm] x \in X [/mm] mit [mm] \parallel x \parallel_X = 1 [/mm], so dass:

[mm] |l(x)| > \bruch{\parallel l \parallel_{X^\*}}{c} , c \in \IN [/mm]

Das [mm] x [/mm] die Norm 1 hat, ist klar( Dies folgt aus der Definition) Folgt die Ungleichung aus folgendem:

Wenn ich eine Menge [mm] M [/mm] habe, mit [mm]sup(M) < \infty [/mm] dann weiss ich folgendes:
[mm]\forall \epsilon >0 \exists m \in M : sup(M)-\epsilon < m [/mm]
Naja und dann müsste ich ein [mm]c \in \IN [/mm] so wählen, dass

[mm]sup(M)-\epsilon > \bruch{sup(M)}{c} [/mm]

Sind meine Überlegung korrekt?

Gruss

physicus

        
Bezug
Wahl geschickter Folge: Antwort
Status: (Antwort) fertig Status 
Datum: 15:08 Do 25.08.2011
Autor: Dath

An sich ja schon... Aber wozu brauchst du das?

Bezug
                
Bezug
Wahl geschickter Folge: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:30 Do 25.08.2011
Autor: physicus

Hallo Dath

Weil ja oft Widerspruchsbeweise so geführt werden. Deshalb brauch ich das. Um genau zu sein, wurde so ein Beweis in der Vorlesung geführt und ich wollte nur sicher sein, dass meine Argumentation richtig ist.

Gruss

physicus

Bezug
        
Bezug
Wahl geschickter Folge: Antwort
Status: (Antwort) fertig Status 
Datum: 08:42 Fr 26.08.2011
Autor: fred97


> Hallo,
>  
>
> Meine Frage ist ziemlich grundlegender Natur und ich bin
> mir sicher, dass dies Analysis 1 ist, allerdings bin ich
> mir nicht sicher, ob meine Argumentation stimmt:
>  
> Nehmen wir an, dass wir [mm]l \in X^\*[/mm] der normale Dualraum.
> Aus der Definition der Norm sollte nun folgen, dass es ein
> Element [mm]x \in X[/mm] mit [mm]\parallel x \parallel_X = 1 [/mm], so dass:
>  
> [mm]|l(x)| > \bruch{\parallel l \parallel_{X^\*}}{c} , c \in \IN[/mm]


Wo kommt das c her ? ????

Es sollte [mm]l \ne 0 [/mm] sein. Dann gilt:  

[mm] $\bruch{\parallel l \parallel_{X^\*}}{c}<\parallel [/mm] l [mm] \parallel_{X^\*}$ [/mm]  für jedes c [mm] \ge [/mm] 2.

Zu einem solchen c gibt es dann ein x [mm] \in [/mm] X mit $ [mm] \parallel [/mm] x [mm] \parallel_X [/mm] = 1 $ und

                    [mm] $\bruch{\parallel l \parallel_{X^\*}}{c}<|l(x)|$ [/mm]

FRED

>
> Das [mm]x[/mm] die Norm 1 hat, ist klar( Dies folgt aus der
> Definition) Folgt die Ungleichung aus folgendem:
>  
> Wenn ich eine Menge [mm]M[/mm] habe, mit [mm]sup(M) < \infty[/mm] dann weiss
> ich folgendes:
> [mm]\forall \epsilon >0 \exists m \in M : sup(M)-\epsilon < m[/mm]
>  
> Naja und dann müsste ich ein [mm]c \in \IN[/mm] so wählen, dass
>  
> [mm]sup(M)-\epsilon > \bruch{sup(M)}{c}[/mm]
>  
> Sind meine Überlegung korrekt?
>  
> Gruss
>  
> physicus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]