matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10Wachstum
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Mathe Klassen 8-10" - Wachstum
Wachstum < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wachstum: Aufgabe 7
Status: (Frage) beantwortet Status 
Datum: 21:07 So 20.01.2008
Autor: Andy91

Hallo!

Mir fehlt nun noch eine Aufgabe zu morgen!Dort bin ich mir nicht 100% sicher:

Auf einem Feld werden wöchentlich 9kg eines Unkrautvertilgungsmittels aufgebracht.Außerdem nimmt die Menge des Mittels wegen Zersetzung wöchentlich um 60% ab.

a) Zeige,dass trotz der hohen Abnahmerate von 60% ein Wachstum vorliegt.Wie groß ist die Grenze?

b) Gib in einer Tabelle die Menge des Unkrautvertilgungsmittels in den nächsten 20 Wochen an.Nach wie vielen Wochen ist der Grenzbestand schon zu 99% erreicht.

Könnte mir bitte jemand helfen,z.B. die Rechnung sagen,denn da bin ich mir nicht sicher wie sie lauten soll..

Gruß


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Wachstum: Antwort
Status: (Antwort) fertig Status 
Datum: 22:23 So 20.01.2008
Autor: Biboo

Hallo! Ich versuchs mal zu lösen, wobei ich mir bei manchen Antworten auch nicht ganz sicher bin.

Für die Aufgabe ist die Formel vom beschränkten Wachstum zu verwenden. Warum? Intuitiv und notfalls die ersten Werte ohne Formel errechnen, da sieht man dann, dass die Differenz der Zunahme (was dann die Steigung des Graphen wäre) wöchentlich abnimmt. Die Steigung scheint also gegen Null zu gehen -> Irgendwann ist die Menge so groß, dass 60% davon genau 9kg ausmachen... ich hoffe das ist verständlich.

Nun zu der Formel:

Nn = [mm] N0*q^n [/mm] + N0*(1 - [mm] q^n)/(1 [/mm] - q)

Doe Formel habe ich so aus einem Forum aufgeschnappt:
Nn = Die Menge des Unkrautvertilgungsmittels nach n Wochen. (Ausgangszustand N(0)= 9kg )
N0 = Menge des wöchentlich aufgebrachten Mittels
q = 0.6 (Zersetzung des Mittels)

Also hast du die Formel:
f(n)= [mm] 9*0,6^{n}+\bruch{9*(1-0.6^{n})}{1-0,6} [/mm]

Wenn mit Grenze gemeint ist, wie viel kg des Mittels maximal auf dem Feld liegen dann ist das:
[mm] \limes_{n\rightarrow\infty}9*0,6^{n}+\bruch{9*(1-0.6^{n})}{1-0,6} [/mm]

[mm] =\limes_{n\rightarrow\infty} [/mm] 0 + [mm] \bruch{9}{0,4} [/mm] + 0 = 22,5

da [mm] \limes_{n\rightarrow\infty} 9*0,6^{n} [/mm] = 0

zu b)
Da musst du wohl eine Tabelle zu der Funktion erstellen. Das ist ja eigentlich nur Ablesen und ordentliches Aufschreiben :)

Wenn das mit der Grenze so bei mir stimmt, dann müsste das folgendermaßen gerechnet werden:
[mm] \bruch{22,5*99}{100}=22,275 [/mm]
Anschließend schaust du, oder errechnest wann gilt:
[mm] 9*0,6^{n}+\bruch{9*(1-0.6^{n})}{1-0,6}\ge [/mm] 22,275
Denk daran, dass [mm] n\in\IN [/mm] ,also n=0,1,2,3,4,5,6,7,...

Das Ergebnis bei der Teilaufgabe ist n = 9!

Ich hoffe ich habe mich nirgends vertan und konnte dir damit helfen!

Liebe Grüße
Biboo



Bezug
                
Bezug
Wachstum: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:37 Mo 21.01.2008
Autor: Andy91

Danke!Es war alles richtig!


Gruß

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]