matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationstheorieVorgehen Integralberechnung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Integrationstheorie" - Vorgehen Integralberechnung
Vorgehen Integralberechnung < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vorgehen Integralberechnung: Tipp?
Status: (Frage) beantwortet Status 
Datum: 12:22 Fr 10.08.2012
Autor: Glumi

Ich habe diese Frage in keinem anderen Forum gestellt.

Hallo,

ich habe etwas Probleme bei der Berechnung von Integralen:
Ich habe mir zwar alle gelernten Methoden(Partialbruchzerlegung, Polynomdivision, Partielle Integration und Substitution) notiert.

Trotzdem sitze ich dann öfters vor der Aufgabe und gehe die Lösungsmöglichkeiten durch. Und komme dann trotzdem nicht auf den richtigen Weg.

Probleme sind dann z.b. das ich nicht weiß,

1) was ich substituieren soll- gibts es eine Art Daumenregel(z.b. immer die Variable mit dem größten Exponenten)

2)ob ich mit der Partiellen weiterkomme. Hab dann öfters ein ähnliches Problem im Integral. Wie kann ich im vorraus bestimmen, ob ich mit der Partiellen Integration weiterkomme?








        
Bezug
Vorgehen Integralberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 13:06 Fr 10.08.2012
Autor: angela.h.b.

Hallo,

das Integrieren ist schwierig.

Allgemeine Kochrezepte zu geben ist kaum möglich.

Man lernt es, indem man ganz, ganz viele Integrale berechnet.
Dabei lernt man u.a. die Standardtricks kennen - oftmals zunächst, wenn man nach Stunden des vergeblichen Probierens in den Lösungen nachschaut.
Beim Rechnen vieler Integrale, Gehen von Irrwegen, Studium der Lösungen, entwickelt man ein Gefühl dafür, wie man es mit Erfolgsaussichten versuchen könnte.

Ob ein Weg funktioniert, weiß man erst, wenn man ihn gegangen ist und er funktioniert hat.

"Üben, üben, üben " ist das beste Rezept.

LG Angela


Bezug
        
Bezug
Vorgehen Integralberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 13:18 Fr 10.08.2012
Autor: Richie1401

Hallo Glumi,

in Anlehnung an Angelas Beitrag möchte ich folgendes hinzufügen:

- "Ableiten ist Handwerk, Integrieren eine Kunst"
- Es gibt gewisse Grundintegrale und Lösungsmethoden für gewisse Strukturen. Diese muss man eben einfach lernen. Irgendwann geht es teilweise ganz leicht von statten.
- Verändere den Integranden.z.B. [mm] cos^2(x)=\frac{cos(2x)-1}{2} [/mm]
- Multipliziere möglichst immer aus

mit Vorsicht zu genießen ist dieser "Tipp": Taylorentwicklung nutzen.

In der Ukraine ist es wie folgt: Dort rechnet ein Student teilweise 100 Integrale zur Übung. Da setzt man sich hin und rechnet einen Tag lang 50 Integrale. Wer fertig ist, kann gehen. Das sind dann aber auch Leute, die es dann wirklich gut beherrschen.

Durchhalten ist wohl hier das Entscheidende!

Bezug
        
Bezug
Vorgehen Integralberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:20 Fr 10.08.2012
Autor: leduart

Hallo
in paar Regeln ausser üben gibt es schon_
1.Polynom in Z und N
dann Polynomdivision und anschleißend Partialbruch.
Produkt 2 er fkt g(x)*h(x)
2.untersuchen ob h'*g oder g'*h ein einfacheres Integral ist, dann partiell.
3. sehen ob etwas die Form f'*f hat dann sehen, dass [mm] (f^2)'=2f*f' [/mm]
entsprechend f'/f wissen dass (ln(f))'=f'/f
odder [mm] (\sqrt{f})'=0.5*f'/sqrt{f} [/mm]
alli diese Regeln unter 3. gehen auch mit Substitution
4. zu wolfran alpha gehen, integral berechnen lassen und "show steps" dabei lernt man auch, wenn man es danach mit nem ähnlichen Integral  versucht.
und natürlich eben üben !
Gruss leduart


Bezug
                
Bezug
Vorgehen Integralberechnung: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:56 Fr 10.08.2012
Autor: Glumi

Danke.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]