matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationVoraussetzung veranschaulichen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Integration" - Voraussetzung veranschaulichen
Voraussetzung veranschaulichen < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Voraussetzung veranschaulichen: Frage zu Voraussetzung
Status: (Frage) überfällig Status 
Datum: 20:41 Mi 07.02.2018
Autor: Tipsi

Aufgabe
Hallo Community,
beim Beweis des Gaußschen Integralsatzes haben wir folgende Voraussetzung für ein dafür benötigtes Lemma:
Sei Q ein Würfel im n-1-dimensionalen Teilraum L des [mm] \mathbb{R}^n, \alpha\inC^1(Q, [/mm] (a,a+1)), a [mm] \in \mathbb{R}, [/mm] n ein normierter Normalvektor auf L.
Sei A durch [mm] A:=\{x+\lambda n: x \in Q, \lambda \in (a,\alpha(x))\} [/mm] gegeben und f [mm] \in C(\overline{A})\cap C^1(A^0), supp(f)\cap(\{x+an:x \in Q\}\cup \{x+\lambda n: x \in \text{Rand von}Q, \lambda \in (a,a+1)\})=\emptyset [/mm]

Anschließend definieren wir [mm] z_0 [/mm] aus dem Rand einer offenen Menge A als regulären Punkt, wenn es eine Umgebung U von [mm] z_0 [/mm] bzgl. der Relativtopologie auf dem Rand von A gibt, sodass U = [mm] \{z'+\alpha(z')n:z'\in V\} [/mm] mit einer offenen Teilmenge V eines n-1-dimensionalen Teilraumes L= Orthogonalraum von n von [mm] \mathbb R^n [/mm] und einer [mm] C^1-Funktion \; \alpha [/mm] auf V gibt, sodass für eine geeignete Umgebung W von [mm] z_0 [/mm] in [mm] \mathbb{R}^n [/mm] mit einem a [mm] \in \mathbb{R} [/mm] gilt: W [mm] \cap [/mm] A = [mm] \{z \in \mathbb{R}^n = z'+\lambda n: z' \in V, \lambda \in (a, \alpha(z'))\}. [/mm]


Für mich liest sich sowohl die Voraussetzung als auch die Definiiton des regulären Randpunktes extrem kompliziert, darum wäre es toll, wenn ihr mir den Zusammenhang zwischen der Definition des regulären Punktes und der Voraussetzung erklären könntet (denn die Menge der regulären Randpunkte von A besteht offenbar genau aus jenen Randpunkten, für die die Voraussetzung erfüllt ist, aber ich sehe nicht, wieso?). Und falls ihr euch unter der Definition und Voraussetzung etwas anschaulich (evtl. auf einen einfacheren Fall übertragen) vorstellen könnt, wäre ich sehr dankbar, wenn ihr mir mitteilen würdet, wie bzw. wie man die Voraussetzung und Definition sprachlich formuliert ausdrücken kann?

        
Bezug
Voraussetzung veranschaulichen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:20 So 11.02.2018
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]