matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungVon Kurven eingeschlossene Flä
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Integralrechnung" - Von Kurven eingeschlossene Flä
Von Kurven eingeschlossene Flä < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Von Kurven eingeschlossene Flä: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:42 So 26.10.2008
Autor: HilaryAnn

Aufgabe
Berechne die von den Kurven eingeschlossene Fläche:
[mm] [f(x)=x^3-x [/mm] ]    
[mm] [g(x)=1-x^2] [/mm]

Hey!
Tja, Ferien und jetzt habe ich schon wieder alles vergessen.... Oh Mann, hätte ich nur schon früher damit angefangen.
Also, wir haben schon die Lösung (4/3 ) , aber wir sollen es ja rechnen und ich würde auch gerne wissen wie es geht.

Also, ich habe ja schon die Nullstellen von den Funktionen bei f(x)   [mm] x_1=0 [/mm] und [mm] x_2=1 [/mm] . Und für g(x) [mm] x_1=1 [/mm] und [mm] x_2=-1 [/mm]  . Das verstehe ich ja.
Aber denn haben wir irgendwie F8X) mit g(x) gleichgestellt. Also f(x)=g(x) und dann [mm] [x^3-x-1+x^2=0] [/mm]     Stimmt das? Und wenn ja, was mache ich jetzt, ich glaube das ist ja für die Schnittstellen, oder? Also, wir wollen x_s1 und x_s2 rausbekommen. Aber mit pq-Formal geht das doch nicht...
Muss das wieder mit Polynomdivision gemacht werden? Und durch was teile ich dann? (x-1)  ?
LG

        
Bezug
Von Kurven eingeschlossene Flä: Antwort
Status: (Antwort) fertig Status 
Datum: 22:03 So 26.10.2008
Autor: Adamantin


> Berechne die von den Kurven eingeschlossene Fläche:
>  [mm][f(x)=x^3-x[/mm] ]    
> [mm][g(x)=1-x^2][/mm]
>  Hey!
>  Tja, Ferien und jetzt habe ich schon wieder alles
> vergessen.... Oh Mann, hätte ich nur schon früher damit
> angefangen.
>  Also, wir haben schon die Lösung (4/3 ) , aber wir sollen
> es ja rechnen und ich würde auch gerne wissen wie es geht.
>  
> Also, ich habe ja schon die Nullstellen von den Funktionen
> bei f(x)   [mm]x_1=0[/mm] und [mm]x_2=1[/mm] . Und für g(x) [mm]x_1=1[/mm] und [mm]x_2=-1[/mm]  
> . Das verstehe ich ja.
>  Aber denn haben wir irgendwie F8X) mit g(x)
> gleichgestellt. Also f(x)=g(x) und dann [mm][x^3-x-1+x^2=0][/mm]    
> Stimmt das? Und wenn ja, was mache ich jetzt, ich glaube
> das ist ja für die Schnittstellen, oder? Also, wir wollen
> x_s1 und x_s2 rausbekommen. Aber mit pq-Formal geht das
> doch nicht...
>  Muss das wieder mit Polynomdivision gemacht werden? Und
> durch was teile ich dann? (x-1)  ?
>  LG

Also bisher sind deine Überlegungen richtig. Die Nullstellen sind leider völlig uninteressant für die Berechnung der eingeschlossenen Fläche, denn dafür sind lediglich die Schnittstellen der beiden Funktionen wichtig. Und um die zu berechnen, muss man nun einmal die beiden Funktionen gleichsetzen, denn du willst die Stellen, an denen beide Funktionen den selben Wert annehmen.

Und du hast recht, denn leider ist die Funktion dann ein Polynom dritten Grades, bei dem du eine NST erraten musst. In der Schule ist dabei die NST fast immer ganzzahlig und damit ein Teiler das absoluten Gliedes. Nun, was heißt das?
Schau einfach bei solchen Funktionen, die nur mit Polynomdivision zu vereinfachen sind, ob du eine NST erraten kannst, die zugleich nenner das absoluten Gliedes, also des Gliedes ohne x ist!

Bei deiner Funktion ist das absolute Glied -1, ganzzahlige Teiler von -1 sind 1 und -1.

Test 1: $ [mm] x_0=1 [/mm] $, $ [mm] f(1)=1-1-1+1=-1\not=0 [/mm] $
Test 2: $ [mm] x_0=-1 [/mm] $ $ f(-1)=-1+1-1+1=0! $

Damit hast du deine NST und du kannst eine Polynomdivision mit (x+1) machen!
Wenn die Polynomdivision ohne Rest aufgeht, hast du richtig gerechnet.
Wenn du die Schnittstellen hast, sind das deine Grenzen für das Integral.

Bezug
                
Bezug
Von Kurven eingeschlossene Flä: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:11 So 26.10.2008
Autor: HilaryAnn

Danke erstmal!
Aber wenn ich jetzt durch (x+1) teile, dann kommt doch [mm] x^2-1 [/mm] raus, oder?
Und dann kann ich ja nicht die pq-Formal anwenden...

Bezug
                        
Bezug
Von Kurven eingeschlossene Flä: Antwort
Status: (Antwort) fertig Status 
Datum: 22:20 So 26.10.2008
Autor: Steffi21

Hallo, aber sicher doch p=0 und q=-1, es geht aber besser

[mm] x^{2}-1=0 [/mm]

[mm] x^{2}=1 [/mm]

[mm] x_1=-1 [/mm] untere Grenze

[mm] x_2=1 [/mm] obere Grenze

Steffi

Bezug
                                
Bezug
Von Kurven eingeschlossene Flä: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:30 So 26.10.2008
Autor: HilaryAnn

Ok, ja :) .
Dankeschön!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]