matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExtremwertproblemeVolumen eines Kegels
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Extremwertprobleme" - Volumen eines Kegels
Volumen eines Kegels < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Volumen eines Kegels: Korrektur
Status: (Frage) beantwortet Status 
Datum: 22:29 Do 28.05.2009
Autor: Nicicole

Aufgabe
Die Seitenlänge eines Kegels beträgt 25 cm. Wie groß ist der Radius r und die Höhe h zu wählen, damit das Kegelvolumen maximal wird?

ich bitte um korrektur.

1.) V= 1/3 [mm] \pi r^{2} [/mm] h
   [mm] s^{2} [/mm] = [mm] r^{2} [/mm] + [mm] h^{2} [/mm]
2.) V(r,h)= 1/3 [mm] \pi r^{2} [/mm] h
3.) [mm] r^{2} =s^{2} [/mm]  - [mm] h^{2} [/mm]
4.) V(h) = 1/3 * [mm] \pi* [/mm] h * [mm] (s^{2} [/mm]  - [mm] h^{2}) [/mm]
     V(h) = -1/3 * [mm] \pi* h^{3} [/mm] + 208/ 1/3* [mm] \pi* [/mm] h
5.) D(f) = {0;24,9}
6.) V(h) = -1,0472 * [mm] h^{3} [/mm] + 654,4984 * h
     V'(h) = 3,1416 * [mm] h^{2} [/mm] + 654,4984
         0= 3,1416 *  [mm] h^{2} [/mm] + 654,4984
         h= 14,4337

[mm] s^{2} [/mm] = [mm] r^{2} [/mm] + [mm] h^{2} [/mm]
[mm] r^{2} =s^{2} [/mm]  - [mm] h^{2} [/mm]
r= 20,4124

        
Bezug
Volumen eines Kegels: Antwort
Status: (Antwort) fertig Status 
Datum: 23:39 Do 28.05.2009
Autor: leduart

Hallo Nicole
> Die Seitenlänge eines Kegels beträgt 25 cm. Wie groß ist
> der Radius r und die Höhe h zu wählen, damit das
> Kegelvolumen maximal wird?
>  ich bitte um korrektur.
>  
> 1.) V= 1/3 [mm]\pi r^{2}[/mm] h
>     [mm]s^{2}[/mm] = [mm]r^{2}[/mm] + [mm]h^{2}[/mm]
>  2.) V(r,h)= 1/3 [mm]\pi r^{2}[/mm] h
>  3.) [mm]r^{2} =s^{2}[/mm]  - [mm]h^{2}[/mm]
>  4.) V(h) = 1/3 * [mm]\pi*[/mm] h * [mm](s^{2}[/mm]  - [mm]h^{2})[/mm]

wenn du einfach die Zahlenfaktoren stehen laesst ist es einfacher:
[mm] V(h)=\pi/3*(hs^2-h^3) [/mm]
jetzt ableiten.  die [mm] \pi/3 [/mm] stehen lassen, die gehen dann weg, wenn du V'=0 setzest.Wenn du auch s drin laesst brauchst du den TR nur einmal.
)

>       V(h) = -1/3 * [mm]\pi* h^{3}[/mm] + 208/ 1/3* [mm]\pi*[/mm] h
>  5.) D(f) = {0;24,9}
>  6.) V(h) = -1,0472 * [mm]h^{3}[/mm] + 654,4984 * h
>       V'(h) = 3,1416 * [mm]h^{2}[/mm] + 654,4984
>           0= 3,1416 *  [mm]h^{2}[/mm] + 654,4984
>           h= 14,4337
>  
> [mm]s^{2}[/mm] = [mm]r^{2}[/mm] + [mm]h^{2}[/mm]
>   [mm]r^{2} =s^{2}[/mm]  - [mm]h^{2}[/mm]
>   r= 20,4124

Alles richtig, aber schoener waer [mm] h=s/\wurzel{3} [/mm]
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]