matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis des R1Vollständigkeitsaxiom
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Analysis des R1" - Vollständigkeitsaxiom
Vollständigkeitsaxiom < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vollständigkeitsaxiom: Verständnisfrage
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 13:34 So 28.12.2008
Autor: Walodja1987

Hallo liebe Mathehelfer,

sitze grad an Analysis dran und versuche gerade einen Beweis in Verbindung mit dem Vollständigkeitsaxiom zu verstehen. Mir ist aber völlig schleierhaft, woher er bestimmte Sachen nimmt.
Dies ist eine Bermerkung zum Vollständigkeitsaxiom mit anschließendem Beweis.

Es gibt ein x [mm] \in \IR [/mm] mit [mm] x^{2} [/mm] = 2.
Denn: Sei S = [mm] \{x \in [0, \infty) : x^{2} \le 2 \}. [/mm] Dann ist [mm] S\not=\emptyset [/mm] und nach oben beschränkt, z.B. durch 2 [x>2 [mm] \Rightarrow x^{2}>4 \Rightarrow [/mm] x [mm] \not\in [/mm] S]
Sei a:=supS
Dann ist [mm] a^{2}=2 [/mm]
(i) Angenommen [mm] a^{2}<2. [/mm] Dann ist [mm] 2-a^{2}>0. [/mm] Wähle n [mm] \in \IN [/mm] mit
[mm] \bruch{2a+1}{2-a^{2}} [/mm] < n    

[mm] (a+\bruch{1}{n})^{2} [/mm] = [mm] a^{2} [/mm] + [mm] \bruch{2a}{n} [/mm] + [mm] \bruch{1}{n} \le a^{2} [/mm] + [mm] \bruch{2a+1}{n} [/mm] < [mm] a^{2} [/mm] + 2 - [mm] a^{2} [/mm] = 2.

Also ist a + [mm] \bruch{1}{n} \in [/mm] S, d.h. a war keine obere Schranke
[mm] \to [/mm] Widerspruch zu a obere Schranke.

(ii) Angenommen [mm] a^{2} [/mm] > 2 . Wähle
n [mm] \in \IN [/mm] mit [mm] \bruch{2a}{a^{2}-2} [/mm] < n  
Dann ist [mm] (a-\bruch{1}{n})^{2} [/mm] = [mm] a^{2} [/mm] - [mm] \bruch{2a}{n} [/mm] + [mm] \bruch{1}{n^{2}} [/mm] > [mm] a^{2} [/mm] - [mm] \bruch{2a}{n} [/mm] > 2,
d.h. a ist kein Supremum.

Im Beweis haben wir gesehen: Sei a = supS. Dann gilt:
[mm] \forall\varepsilon>0 \exists [/mm] x [mm] \in [/mm] S: [mm] a-\varepsilon [/mm] < x [mm] \le [/mm] a.

Das wars. Wäre über eine ausführliche Erklärung sehr dankbar.

Gruß Waldemar

        
Bezug
Vollständigkeitsaxiom: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:21 So 28.12.2008
Autor: Merle23

Du musst schon dazu schreiben an welchen Stellen genau es mit dem Verständnis hakt.

Den kompletten Beweis einfach so dir vorkauen wird wohl kaum einer machen.

Würde auch nicht viel bringen, da die Wahrscheinlichkeit groß ist, dass man gerade die Sachen, die du nicht verstanden hast, nicht genügend erklärt, da man ja -alles- erklären soll, was viel zu viel ist.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]