matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-SonstigesVollständige Induktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Sonstiges" - Vollständige Induktion
Vollständige Induktion < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vollständige Induktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:23 So 28.10.2012
Autor: Mathe-Andi

Aufgabe
Beweisen Sie mit Hilfe der vollständigen Induktion folgende Aussage:

[mm] 1+4+7+...+(3n-2)=\bruch{n(3n-1)}{2} [/mm]

Hallo,

ich bin noch nicht ganz so fit in der vollständigen Induktion.

Meine Rechnung:

Induktionsannahme:

A(n=1): [mm] (3*1-2)=\bruch{1(3*1-1)}{2} [/mm]
ergibt: 1=1; somit erfüllt

Induktionsschluss:

A(n+1): [mm] (3*(n+1)-2)=\bruch{(n+1)(3(n+1)-1)}{2} [/mm]

[mm] (3n+3-2)=\bruch{(n+1)(3n+3-1)}{2} [/mm]

[mm] (3n+1)=\bruch{(n+1)(3n+2)}{2} [/mm]

Bin ich schon fertig? Ich sehe nie, wann ich fertig bin.



        
Bezug
Vollständige Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 12:45 So 28.10.2012
Autor: MathePower

Hallo Mathe-Andi,

> Beweisen Sie mit Hilfe der vollständigen Induktion
> folgende Aussage:
>  
> [mm]1+4+7+...+(3n-2)=\bruch{n(3n-1)}{2}[/mm]
>  Hallo,
>  
> ich bin noch nicht ganz so fit in der vollständigen
> Induktion.
>  
> Meine Rechnung:
>  
> Induktionsannahme:
>  
> A(n=1): [mm](3*1-2)=\bruch{1(3*1-1)}{2}[/mm]
>  ergibt: 1=1; somit erfüllt
>  
> Induktionsschluss:
>  
> A(n+1): [mm](3*(n+1)-2)=\bruch{(n+1)(3(n+1)-1)}{2}[/mm]
>  
> [mm](3n+3-2)=\bruch{(n+1)(3n+3-1)}{2}[/mm]
>  
> [mm](3n+1)=\bruch{(n+1)(3n+2)}{2}[/mm]
>  
> Bin ich schon fertig? Ich sehe nie, wann ich fertig bin.
>  


Zunächst nimmst Du an die obige Formel sei bis n richtig.

Zu zeigen ist dann, daß sie auch für n+1 richtig ist.
Dazu gehst Du so vor:

[mm]\summe_{k=1}^{n+1}{3k-2}=\underbrace{\summe_{k=1}^{n}{3k-2}}_{Induktionsvoraussetzung}+\left( \ 3*\left(n+1\right)-2\ }\ \right)=\bruch{n(3n-1)}{2}+\left( \ 3*\left(n+1\right)-2\ }\ \right)[/mm]

Zeige nun, daß sich der Ausdruck auf der rechten Seite,
als Formel obiger Bauart schreiben läßt.


Gruss
MathePower

Bezug
                
Bezug
Vollständige Induktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:04 So 28.10.2012
Autor: Mathe-Andi

Meine neue Rechnung:

[mm] 1+4+7+...+(3n-2)=\bruch{n(3n-1)}{2} [/mm]

A(n): [mm] \summe_{k=1}^{n} (3k-2)=\bruch{n(3n-1)}{2} [/mm]

A(n=1): [mm] \summe_{k=1}^{1} (3*1-2)=\bruch{1(3*1-1)}{2} \Rightarrow [/mm] 1=1

A(n+1): [mm] \summe_{k=1}^{n+1} (3k-2)=\bruch{n+1(3(n+1)-1)}{2} [/mm]

[mm] \summe_{k=1}^{n+1} [/mm] (3k-2)= [mm] \summe_{k=1}^{n} [/mm] (3k-2) + 3(n+1)-2

[mm] =\bruch{n(3n-1)}{2} [/mm] + 3(n+1)-2

[mm] =\bruch{3n^{2}-n}{2} [/mm] + [mm] \bruch{3n+1}{1} [/mm]

= [mm] \bruch{3n^{2}-n+6n+2}{2} [/mm]

= [mm] \bruch{n(3n+5)+2}{2} [/mm]


Ist das richtig so? Bin ich jetzt fertig? Die ursprüngliche Form ist es ja nicht ganz.



Bezug
                        
Bezug
Vollständige Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 14:14 So 28.10.2012
Autor: teo


> Meine neue Rechnung:
>  
> [mm]1+4+7+...+(3n-2)=\bruch{n(3n-1)}{2}[/mm]
>  
> A(n): [mm]\summe_{k=1}^{n} (3k-2)=\bruch{n(3n-1)}{2}[/mm]
>  
> A(n=1): [mm]\summe_{k=1}^{1} (3*1-2)=\bruch{1(3*1-1)}{2} \Rightarrow[/mm]
> 1=1
>  
> A(n+1): [mm]\summe_{k=1}^{n+1} (3k-2)=\bruch{n+1(3(n+1)-1)}{2}[/mm]
>  
> [mm]\summe_{k=1}^{n+1}[/mm] (3k-2)= [mm]\summe_{k=1}^{n}[/mm] (3k-2) +
> 3(n+1)-2
>  
> [mm]=\bruch{n(3n-1)}{2}[/mm] + 3(n+1)-2
>  
> [mm]=\bruch{3n^{2}-n}{2}[/mm] + [mm]\bruch{3n+1}{1}[/mm]
>  
> = [mm]\bruch{3n^{2}-n+6n+2}{2}[/mm]
>  
> = [mm]\bruch{n(3n+5)+2}{2}[/mm]
>  

Bis hierhin ist es richtig.

> Ist das richtig so? Bin ich jetzt fertig? Die
> ursprüngliche Form ist es ja nicht ganz.
>  

Nein die gewünschte Form ist es ganz offensichtlich nicht. Wie schaut denn die gewünschte Form aus? Schreib sie dir mal hin und form sie um, dann siehst du wies weiter geht. Außerdem ist die Induktion so wie du sie hingeschrieben hast nicht wirklich schön!

Grüße  


Bezug
                                
Bezug
Vollständige Induktion: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 14:49 So 28.10.2012
Autor: Mathe-Andi

Die Form in der ich sie haben will lautet:

[mm] \bruch{n+1(3n+2)}{2} [/mm]

Ich weiß nicht, wie ich meine weiter umformen soll. Wenn ich die obere ausmultipliziere komme ich auf meine Form. Aber mit welchem Schritt erreiche ich das?

Bei [mm] \bruch{3n^{2}+5n+2}{2} [/mm] im Zähler eine quadratische Ergänzung durchführen? Sorry ich stehe hoffnungslos auf dem Schlauch.

Ich habe mir Mühe gegeben die Induktion ordentlich aufzuschreiben. Überall findet man nur Abkürzungen mit ausgelassenen Zwischenschritten. Der Student in unserem Mathe Tutorium hat die Induktion in 2 Zeilen (!) an die Tafel gerotzt. Induktionsanfang und Induktionsschluss. Und da soll man noch was lernen. Ich habe mich an meiner Mitschrift orientiert. Im Papula steht leider dazu nichts.

Wie schreibt man sie denn schön auf?

Danke, Gruß Andreas

Bezug
                                        
Bezug
Vollständige Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 14:54 So 28.10.2012
Autor: MathePower

Hallo Mathe-Andi,

> Die Form in der ich sie haben will lautet:
>  
> [mm]\bruch{n+1(3n+2)}{2}[/mm]
>  
> Ich weiß nicht, wie ich meine weiter umformen soll. Wenn
> ich die obere ausmultipliziere komme ich auf meine Form.
> Aber mit welchem Schritt erreiche ich das?
>


Ersetze die "2" durch "3-1" im Zähler.


> Bei [mm]\bruch{3n^{2}+5n+2}{2}[/mm] im Zähler eine quadratische
> Ergänzung durchführen? Sorry ich stehe hoffnungslos auf
> dem Schlauch.
>  
> Ich habe mir Mühe gegeben die Induktion ordentlich
> aufzuschreiben. Überall findet man nur Abkürzungen mit
> ausgelassenen Zwischenschritten. Der Student in unserem
> Mathe Tutorium hat die Induktion in 2 Zeilen (!) an die
> Tafel gerotzt. Induktionsanfang und Induktionsschluss. Und
> da soll man noch was lernen. Ich habe mich an meiner
> Mitschrift orientiert. Im Papula steht leider dazu nichts.
>  
> Wie schreibt man sie denn schön auf?
>  
> Danke, Gruß Andreas


Gruss
MathePower

Bezug
                                                
Bezug
Vollständige Induktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:15 So 28.10.2012
Autor: Mathe-Andi

[mm] \bruch{(n+1)(3n+2)}{2} \Rightarrow \bruch{(n+1)(3n+3-1)}{2} [/mm]

Ich sehe leider keinen Zusammenhang zu meiner Form [mm] \bruch{n(3n+5)+2}{2}. [/mm] :-(



Bezug
                                                        
Bezug
Vollständige Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 15:32 So 28.10.2012
Autor: reverend

Hallo Andi,

> [mm]\bruch{(n+1)(3n+2)}{2} \Rightarrow \bruch{(n+1)(3n+3-1)}{2}[/mm]
>  
> Ich sehe leider keinen Zusammenhang zu meiner Form
> [mm]\bruch{n(3n+5)+2}{2}.[/mm] :-(

Allen Ernstes: dann solltest du die Mittelstufe mal wiederholen oder zumindestens ihren Mathestoff.

Multipliziere die Zähler einfach mal aus.

Grüße
reverend


Bezug
                                                                
Bezug
Vollständige Induktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:42 So 28.10.2012
Autor: Mathe-Andi

> Allen Ernstes: dann solltest du die Mittelstufe mal
> wiederholen oder zumindestens ihren Mathestoff.

Wenn ich mal einen Hänger habe bitte ich um Entschuldigung.

Ich sehe natürlich dass die Zähler ausmultipliziert dasselbe ergeben. Mein Problem war nur, dass ich nicht wusste wie ich auf direktem Weg von [mm] \bruch{3n^{2}+5n+2}{2} [/mm] auf die Form [mm] \bruch{(n+1)(3n+2)}{2} [/mm] komme. Ich habe nun meine Form mit Hilfe der pq-Formel in die Nullstellenform gebracht.

[mm] \bruch{(n+1)(n+\bruch{2}{3})}{2} [/mm]

Nun stimmts, ist ja dasselbe :-) War auch vorher dasselbe.

Die Frage weswegen ich diesen Hänger hatte:

Es gilt bei der Induktion also nur die Gleichheit beider Terme zu beweisen, dabei ist es nicht notwendig, dass mein Ergebnis zwingend in der Form der Induktionsbehauptung formuliert ist?
(Das dachte ich bisher nämlich immer, dann hätte ich mir das mit der Nullstellenform sparen können.)



Bezug
                                                                        
Bezug
Vollständige Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 17:30 So 28.10.2012
Autor: teo


>  > Allen Ernstes: dann solltest du die Mittelstufe mal

> > wiederholen oder zumindestens ihren Mathestoff.
>  
> Wenn ich mal einen Hänger habe bitte ich um
> Entschuldigung.
>  
> Ich sehe natürlich dass die Zähler ausmultipliziert
> dasselbe ergeben. Mein Problem war nur, dass ich nicht
> wusste wie ich auf direktem Weg von [mm]\bruch{3n^{2}+5n+2}{2}[/mm]
> auf die Form [mm]\bruch{(n+1)(3n+2)}{2}[/mm] komme. Ich habe nun
> meine Form mit Hilfe der pq-Formel in die Nullstellenform
> gebracht.
>  
> [mm]\bruch{(n+1)(n+\bruch{2}{3})}{2}[/mm]

Das ist doch Quatsch! Wo ist denn bitte [mm]\bruch{(n+1)(n+\bruch{2}{3})}{2}= \bruch{(n+1)(3n+2)}{2} [/mm]? Da hast du ja schonmal den Faktor 3 unterschlagen!

> Nun stimmts, ist ja dasselbe :-) War auch vorher dasselbe.

Stimmt eben nicht!
  

> Die Frage weswegen ich diesen Hänger hatte:
>  
> Es gilt bei der Induktion also nur die Gleichheit beider
> Terme zu beweisen, dabei ist es nicht notwendig, dass mein
> Ergebnis zwingend in der Form der Induktionsbehauptung
> formuliert ist?
>  (Das dachte ich bisher nämlich immer, dann hätte ich mir
> das mit der Nullstellenform sparen können.)
>  

Ich verstehe ehrlich gesagt dein Problem nicht. Dir hat doch nur noch der Schritt von [mm] $\frac{3n^2+5n+2}{2}$ [/mm] auf [mm] $\bruch{(n+1)(3n+2)}{2}$ [/mm] gefehlt. So wenn man das jetzt nicht sofort sieht wies geht, dann multipliziere doch einfach mal [mm] $\bruch{(n+1)(3n+2)}{2}$ [/mm] aus. Dann ist: [mm] $\bruch{(n+1)(3n+2)}{2} [/mm] = [mm] \frac{3n^2+2n+3n+2}{2}$ [/mm] Und schon siehst du wie du auf "direktem" Weg vorgehen musst:

[mm] $\frac{3n^2+5n+2}{2} [/mm] = [mm] \frac{3n^2+2n+3n+2}{2} [/mm] = [mm] \bruch{(n+1)(3n+2)}{2}$ [/mm] War das jetzt so schwierig?



Bezug
                                                                                
Bezug
Vollständige Induktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:12 So 28.10.2012
Autor: Mathe-Andi

Ihr habt Recht. Sorry, ich bin heute wohl mit dem falschen Bein aufgestanden.

Ich habe jetzt mehrere Induktionsaufgaben gelöst, nach diesem Schema und am Ende, wenn es ums Auflösen ging, habe ich die gegebene Form ausmultipliziert und meine Form dann schrittweise darauf hin geführt.

Das geht relativ schnell und schaut sauber aus. Vielen Dank für Eure Hilfe und Nerven mit mir!

Gruß, Andreas

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]