matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenInduktionsbeweiseVollständige Indukion
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Induktionsbeweise" - Vollständige Indukion
Vollständige Indukion < Induktion < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Induktionsbeweise"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vollständige Indukion: Frage zu einer neuen Aufgabe
Status: (Frage) beantwortet Status 
Datum: 17:17 Mo 15.01.2007
Autor: Harrypotter

Aufgabe
Beweise durch vollständige Induktion:

[mm] \br{1}{1*3}+\br{1}{3*5}+\br{1}{5*7}+...+\br{1}{(2n-1)(2n+1)}=\br{n}{2n+1} [/mm]

Ich komm schon wieder bei einer Aufgabe nicht weiter. Habe die ganze zeit gerechnet, weil ich euch nicht nerven wollte. Ich komm aber einfach nicht weiter.

Mein Ansatz:

Induktionsanfang:
für n=1 ist die Aussage wahr, denn [mm] \br{1}{(2-1)(2+1)}=\br{1}{2+1} [/mm]

Induktionsschluss:
Wenn [mm] \br{1}{1*3}+\br{1}{3*5}+\br{1}{5*7}+...+\br{1}{(2k-1)(2k+1)}=\br{k}{2k+1}, [/mm] dann
[mm] \br{1}{1*3}+\br{1}{3*5}+\br{1}{5*7}+...+\br{1}{(2k+1-1)(2k+1+1)}=\br{k+1}{2k+1+1} [/mm]          

Hierbei wusste ich nicht genau, ob man k+1 einklammern muss.

Es [mm] sei:\br{1}{1*3}+\br{1}{3*5}+\br{1}{5*7}+...+\br{1}{(2k-1)(2k+1)}=\br{k}{2k+1} [/mm] (Induktionsannahme)

[mm] \br{1}{1*3}+\br{1}{3*5}+\br{1}{5*7}+...+\br{1}{(2k-1)(2k+1)}+\br{1}{(2k+1-1)(2k+1+1)}=\br{k}{2k+1}+\br{1}{(2k+1-1)(2k+1+1)} [/mm]

Ist das bis hier richtig und wie soll ich das weiter umformen, damit das gewünschte Ergebnis herauskommt?

        
Bezug
Vollständige Indukion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:24 Mo 15.01.2007
Autor: smarty

Hallo,


und ja, du hättest das k+1 einklammern müssen - das gibt nämlich dann mit 2*(k+1)=2k+2


Gruß
Smarty

Bezug
        
Bezug
Vollständige Indukion: viel zu umständlich
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:48 Mo 15.01.2007
Autor: Schluse

Warum machst du es dir denn so umständlich???
Und wieso bleibst du nicht bei n und nimmst dafür k??
Naja...als erstes würde ich dir raten, dass du dir im Induktionsanfang erstmal für dein sn n+1 einsetzt, damit du weißt, was du im Induktionsschluss zu zeigen hasst...

Bezug
                
Bezug
Vollständige Indukion: Korrektur von Smarty angewende
Status: (Frage) beantwortet Status 
Datum: 18:16 Mo 15.01.2007
Autor: Harrypotter

so hab die Korrektur von Smarty in meine Rechnung eingebracht.
Habe jetzt die (k+1) ausgeklammert. Dann hab ich ein bißchen weitergerechnet(erweitert) und hab dann da stehn:
[mm] \br{k(2k+3)+1}{(2k+1)(2k+3)} [/mm]
Nur wie komm ich jetzt weiter?
Danke

Bezug
                        
Bezug
Vollständige Indukion: Antwort
Status: (Antwort) fertig Status 
Datum: 20:59 Mo 15.01.2007
Autor: Bastiane

Hallo Harrypotter!

> so hab die Korrektur von Smarty in meine Rechnung
> eingebracht.
>  Habe jetzt die (k+1) ausgeklammert. Dann hab ich ein
> bißchen weitergerechnet(erweitert) und hab dann da stehn:
>  [mm]\br{k(2k+3)+1}{(2k+1)(2k+3)}[/mm]
>  Nur wie komm ich jetzt weiter?
>  Danke

Also das Prinzip der Induktion scheinst du verstanden zu haben, der Rest ist nur noch Bruchrechnen und Übung! Zu zeigen musst du ja jetzt nur noch, dass dein Ausdruck [mm] =\br{k+1}{2k+3} [/mm] ist. Wenn du dir deinen Ausdruck anguckst, siehst du, dass das im Nenner nur hinkommt, wenn du (2k+1) ausklammerst. Multipliziere dafür den Zähler mal aus, und dann klammere (2k+1) aus (z. B. mit Polynomdivision oder scharfem Hingucken). :-)

Und für die nächste Aufgabe könntest du vllt eine neue Frage aufmachen.

Viele Grüße
Bastiane
[cap]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Induktionsbeweise"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]