matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-InduktionVollst. Induktion Ungleichung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Analysis-Induktion" - Vollst. Induktion Ungleichung
Vollst. Induktion Ungleichung < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vollst. Induktion Ungleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:41 So 26.10.2008
Autor: n33dhelp

Aufgabe
Zeige durch vollständige Induktion, dass folgende Aussage gilt:

[mm] 2^n [/mm] < n! < [mm] n^n [/mm]  für n >= 4

Bin soweit, dass die Induktionsannahme stimmt.
Bei der Übertragung von n auf n+1 häng ich jedoch leider hier fest:

[mm] 2*2^n [/mm] < (n+1)*n! < (n+1)^(n+1)

ich hoffe, dass ihr mir hier weiterhelfen könnt.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Vollst. Induktion Ungleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:51 So 26.10.2008
Autor: M.Rex

Hallo

Teile das ganze doch auf in zwei Ungleichungen:

a)

[mm] 2^{n}

und b)

[mm] n!
Und beide Ungleichungen beweise nun per Induktion.

Also a)

Ind-Schritt:
[mm] 2^{n+1}\stackrel{Potenzgesetz}{=}2^{n}*2^{1}\stackrel{Ind-Vorauss}{<}n!*2\stackrel{2
Den Ind-Anfang und die Ind-Voraussetzung formuliere bitte noch selber.

An b) versuch dich jetzt mal selber.

Marius

Bezug
                
Bezug
Vollst. Induktion Ungleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:13 Do 30.10.2008
Autor: n33dhelp

Hallo,
danke für deine rasche Antwort.
Hab dies mal wie folgt gemacht:

n! < [mm] n^n [/mm] (Ind. Vor.)
n!*(n+1) < [mm] n^n [/mm] * (n+1) (Äquivalenzumformung, n>=4)
[mm] n^{n} [/mm] < [mm] (n+1)^{n} [/mm] (für n>=4)
=>  (n+1)! < [mm] (n+1)^{n+1} [/mm]

Hoff mal, dass das so stimmt bzw. man den Beweis so "durchführen darf"

Bezug
                        
Bezug
Vollst. Induktion Ungleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 23:32 Do 30.10.2008
Autor: Marcel

Hallo,

> Hallo,
>  danke für deine rasche Antwort.
>  Hab dies mal wie folgt gemacht:
>  
> n! < [mm]n^n[/mm] (Ind. Vor.)
>  n!*(n+1) < [mm]n^n[/mm] * (n+1) (Äquivalenzumformung, n>=4)
>  [mm]n^{n}[/mm] < [mm](n+1)^{n}[/mm] (für n>=4)
>  =>  (n+1)! < [mm](n+1)^{n+1}[/mm]
>  
> Hoff mal, dass das so stimmt bzw. man den Beweis so
> "durchführen darf"

bitte, bitte, wer an Worten spart, darf dies dann nicht zudem an Symbolen tun. Schreiben wir das nochmal auf:
Es wird behauptet:
Für alle natürlichen $n [mm] \ge [/mm] 4$ gilt $n! < [mm] n^n\,.$ [/mm] Bei dieser Aussage kannst Du natürlich sagen, ich mache einen Induktionsbeweis mit $n [mm] \ge [/mm] 4$, aber:
Man kann sich auch überlegen, dass $n! < [mm] n^n$ [/mm] für alle natürlichen $n [mm] \ge [/mm] 2$ gilt. Und wir beweisen nun einfach mal diese, etwas stärkere, Aussage. Sie impliziert dann natürlich insbesondere $n! < [mm] n^n$ [/mm] für alle natürlichen $n [mm] \ge [/mm] 4$.

Beweis dazu:
Induktionsstart für $n=2$: $n!=2 < [mm] 4=2^2$ [/mm] ist okay.

I.V.: Es sei $n [mm] \in \IN$, [/mm] $n [mm] \ge [/mm] 2$ mit $n! < [mm] n^n\,.$ [/mm]

Und jetzt schreibe ich mal Deinen Induktionsschritt auf:

$n [mm] \mapsto [/mm] n+1$:
Nach Induktionsvoraussetzung gilt $n! < [mm] n^n\,.$ [/mm] Dies ist (da $n [mm] \ge [/mm] 2$ und damit insbesondere [mm] $\black{n}+1 [/mm] > 0$ ist) äquivalent zu
$$n! (n+1) < [mm] n^n*(n+1)\,,$$ [/mm]
insbesondere gilt also wegen [mm] $(n+1)!=(n+1)*\black{n}!$: [/mm]

$$n! < [mm] n^n$$ [/mm]

[mm] $$\Rightarrow$$ [/mm]

[mm] $$(\star)\;\;\; [/mm] (n+1)! < [mm] n^n*(n+1)\,.$$ [/mm]

Weiter gilt nun $0 < [mm] \black{n} [/mm] < n+1$, was [mm] $n^n [/mm] < [mm] (n+1)^n$ [/mm] impliziert.

Es gilt also [mm] $(\star)$ [/mm] und [mm] $n^n [/mm] < [mm] (n+1)^n$ [/mm] für alle $n [mm] \ge 2\,.$ [/mm] Zusammen liefert dies

$$(n+1)! < [mm] (n+1)*n^n [/mm] < [mm] (n+1)*(n+1)^n$$ [/mm]

und damit wegen [mm] $(n+1)*(n+1)^n=(n+1)^{n+1}$ [/mm] insbesondere

$$(n+1)! < [mm] (n+1)^{n+1}\,.$$ [/mm]

Also gilt $n! < [mm] n^n$ [/mm] für alle natürlichen $n [mm] \ge [/mm] 2$. [mm] $\blacksquare$ [/mm]

Ich hoffe, Du erkennst den Unterschied. Ich meine, alle Deine Überlegungen sind richtig, aber wenn Du schreibst:

> n! < [mm]n^n[/mm] (Ind. Vor.)
>  n!*(n+1) < [mm]n^n[/mm] * (n+1) (Äquivalenzumformung, n>=4)
>  [mm]n^{n}[/mm] < [mm](n+1)^{n}[/mm] (für n>=4)
>  =>  (n+1)! < [mm](n+1)^{n+1}[/mm]

habe ich echt Schwierigkeiten damit, wie das zu lesen ist. (Okay, mir ist das klar, weil ich den Beweis selbst ja auch führen kann, aber es muss ja für jeden verständlich notiert werden.)

Also nur die drei Zeilen hier:

> n! < [mm]n^n[/mm] (Ind. Vor.)
>  n!*(n+1) < [mm]n^n[/mm] * (n+1) (Äquivalenzumformung, n>=4)
>  [mm]n^{n}[/mm] < [mm](n+1)^{n}[/mm] (für n>=4)

könnte man ja auch lesen als:
Die Ungleichung $n! < [mm] n^n$ [/mm] ist äquivalent zu $n!(n+1) < [mm] n^n$ [/mm] (das wäre bis hierhin okay) und liefert auch [mm] $n^n [/mm] < [mm] (n+1)^n\,.$ [/mm]

So meinst Du das aber nicht. Du meinst:
Es gilt $n! < [mm] n^n \underset{\text{da }n \ge 4}{\gdw} [/mm] n!(n+1) < [mm] n^n*(n+1)\,.$ [/mm] Weiter gilt [mm] $n^n [/mm] < [mm] (n+1)^n\,.$... [/mm]

Gruß,
Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]