matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMengenlehreVisualisieren von Mengen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Mengenlehre" - Visualisieren von Mengen
Visualisieren von Mengen < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Visualisieren von Mengen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:29 Di 27.10.2009
Autor: maba

Aufgabe
Visualisieren Sie im [mm] \IR_{2} [/mm] := [mm] \IR×\IR [/mm] die folgenden
Mengen:
A := {(x, y) [mm] \in \IR^2 [/mm] | [mm] x^2 [/mm] + [mm] y^2 \le [/mm] 1}
B := {(x, y) [mm] \in \IR^2 [/mm] | ((x − [mm] 1)^2 [/mm] + (y + [mm] 2)^2 \le [/mm] 1) [mm] \wedge [/mm] ((x − [mm] 1)^2 [/mm] + (y + [mm] 2)^2 \le [/mm] 4)}
C := {(x, y) [mm] \in \IR^2 [/mm] | (y [mm] \ge x^2 [/mm] − 1) [mm] \wedge [/mm] (y [mm] \le [/mm] 3)}

hallo
folgendes problem ich weiß nicht wie man sowas visualisiert

bis denne maba

        
Bezug
Visualisieren von Mengen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:44 Di 27.10.2009
Autor: Herby

Hallo Maba,


Du musst dir ein Koordinatensystem zeichnen und dann Punkte bestimmen, die die Ungleichung erfüllen.

Bei 1 nimmst du am besten die größtmöglichen Wert für x und schaust, was dann für y übrig bleibt. Dann tastest du dich langsam an y ran und schaust halt was dein x so treibt

[mm] y\le\wurzel{x^2+1} [/mm]

[mm] x\le\wurzel{y^2+1} [/mm]

Das ganze ist ziemlich symmetrisch ;-)


Bei 2 ist das Spiel aus 1 halt zweimal vorhanden und leicht verschoben - das siehst du dann.

Bei 3 skizzierst du dir zunächst deine Parabel und überlegst dir welche Punkte mit der ersten Bedingung abgedeckt werden. Anschließend zeichnest du die zweite Bedingung dazu.

Lg
Herby

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]