Vielfachheit < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 14:02 So 13.05.2012 | Autor: | JulesP |
Hey Leute,
brauche dringend Hilfe bei einem Problem. Es geht um ganzrationale Funktionen und ich schreibe morgen eine Klausur über das Thema. Nun bin ich auf eine Aufgabe gestoßen, bei der Graphen in Koordinatensystemen abgebildet sind und ich soll diese Graphen Funktionen zuordnen. Alle Funktionen haben die gleichen Nullstellen und ich weiß nicht wie ich erkennen kann ob der Graph von unten oder von oben kommt, also ob vor der Funktion ein - oder + steht. Könntet ihr mir vielleicht sagen woran ich sehe ob ein Graph von unten oder von oben kommt?
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt. Und auch nichts dazu gefunden was mich weiterbringt.
Danke schon mal im vorraus,
Jules
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 15:02 So 13.05.2012 | Autor: | MyBear |
Hej,
der Trick bei ganzrationalen Funktionen ist, sich die "Ränder" der Funktion anzusehen, also f(x) für [mm]x\to\infty[/mm] und [mm]x\to -\infty[/mm]. Dafür muss die Funktion in der Form
[mm]f(x) = a_n * x^n + ... + a_2 * x^2 + a_1 * x + a_0[/mm]
vorliegen, also etwas wie z.B.
[mm]f(x) = 5x^3 - 3x^2 + 7x-3[/mm]
Der Trick ist nun, dass für ein sehr großes x die Paramerter [mm]a_n[/mm] keine Rolle mehr spielen und sich das x mit dem höchsten Exponenten (auch "mit dem höchsten Grad" genannt) durchsetzt. Im Beispiel wäre das [mm]x^3[/mm].
Jetzt gibt es vier Möglichkeiten:
[Dateianhang nicht öffentlich]
Im Graphen steht [mm]f(x\to-\infty)[/mm] für die linke, [mm]f(x\to\infty)[/mm] für die rechte Seite, [mm]\infty[/mm]steht für "verschindet nach oben" und [mm]-\infty[/mm] für "verschwindet nach unten".
Wenn der Graph aber nicht so weit dargestellt wird, bleibt dir noch die Möglichkeit, in die Funktionsgleichung einfach Werte für x einzusetzen und damit den Verlauf zu prüfen.
Also, ich hoffe, der kleine Überblick hilft dir! Viel Erfolg bei der Klausur!!!
Bjørn
PS: noch ein kleines Beispiel:
[mm]f_1(x) = 5x^3 - 3x^2+7x-3[/mm]
[mm]f_2(x) = \bruch{1}{2} x^4 - 3x^3+\bruch{1}{4} x^2[/mm]
[mm]f_3(x) = -\bruch{1}{1000}x^5 - 5x^2-200[/mm]
[mm]f_4(x) = -\bruch{1}{2}x^2-6x+100[/mm]
[Dateianhang nicht öffentlich]
Dateianhänge: Anhang Nr. 1 (Typ: png) [nicht öffentlich] Anhang Nr. 2 (Typ: png) [nicht öffentlich]
|
|
|
|