matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenVielfaches von Matrizen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra - Matrizen" - Vielfaches von Matrizen
Vielfaches von Matrizen < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vielfaches von Matrizen: Tipp gesucht
Status: (Frage) beantwortet Status 
Datum: 18:31 So 01.11.2009
Autor: julmarie

Aufgabe
Sei K ein Körper und [mm] n\in [/mm] N. Zeigen Sie: Die Vielfachen der Einheitsmatrix En sind genau die nxn-Matritzen, die it allen anderen nxn-Matritzen kommutieren, d.h. es gilt folgendes:
a) Für [mm] \lambda \in [/mm] K gilt: ( [mm] \lambda [/mm] En)B=B( [mm] \lambda [/mm] En) für alle B [mm] \in K^{nxn} [/mm]
b) Ist A [mm] \in K^{nxn} [/mm] mit AB= BA für alle B [mm] \in K^{nxn}, [/mm] so existiert ein [mm] \lambda \in [/mm] K mit A= [mm] \lambda [/mm] En

Hi,

stehe vor dieser aufgabe und weiß  nicht was ich machen soll.. kann mir jemand n Tipp geben und ein paar erste Schritte sagen?

Danke im vorraus

        
Bezug
Vielfaches von Matrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:55 So 01.11.2009
Autor: hannahmaontana

zu a)
E ist bekanntlich das neutrale Element der Matrizenmultiplikation, also gilt schonmal AE=EA (E kommutiert mit jeder Matrix entsprechender Größe).
Außerdem ist die Kommutativität der Multiplikation von Matrix und Skalar ebenfalls bekannt.
Daraus folgt:
[mm] (\lambda E)A=\lambda EA=\lambda AE=A\lambda E=A(\lambda [/mm] E)

bleibt nur noch b) zu zeigen.

Bezug
                
Bezug
Vielfaches von Matrizen: Tipp gesucht
Status: (Frage) beantwortet Status 
Datum: 21:55 So 01.11.2009
Autor: julmarie

Aufgabe 1
Aufgabe 2
Sei K ein Körper und [mm] n\in [/mm] N. Zeigen Sie: Die Vielfachen der Einheitsmatrix En sind genau die nxn-Matritzen, die it allen anderen nxn-Matritzen kommutieren, d.h. es gilt folgendes:
a) Für [mm] \lambda \in [/mm] K gilt: ( [mm] \lambda [/mm] En)B=B( [mm] \lambda [/mm] En) für alle B [mm] \in K^{nxn} [/mm]
b) Ist A [mm] \in K^{nxn} [/mm] mit AB= BA für alle B [mm] \in K^{nxn}, [/mm] so existiert ein [mm] \lambda \in [/mm] K mit A= [mm] \lambda [/mm] En


Könnte mir vielleicht noch jemand mit der Aufgabe b) helfen??
Danke

Bezug
                        
Bezug
Vielfaches von Matrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 05:36 Mo 02.11.2009
Autor: angela.h.b.


>  b) Ist A [mm]\in K^{nxn}[/mm] mit AB= BA
> für alle B [mm]\in K^{nxn},[/mm] so existiert ein [mm]\lambda \in[/mm] K mit
> A= [mm]\lambda[/mm] En
>  
> Könnte mir vielleicht noch jemand mit der Aufgabe b)
> helfen??

Hallo,

Deine Matrix A soll ja mit jeder beliebigen nxn-Matrix vertauschbar sein.

Also ist sie auch vertauschbar mit den [mm] n^2 [/mm] Matrizen, die eine 1 und sonst überall Nullen haben.

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]