matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikVervollständigung 
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Stochastik" - Vervollständigung
Vervollständigung < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vervollständigung : Frage
Status: (Frage) beantwortet Status 
Datum: 13:27 Mi 10.11.2004
Autor: JannisCel

Liege Mathegemeinde,

ich stehe wieder einmal wie ein Smile vor der Wand und renn dagegen. Folgende Aufgabenstellung umtreibt mich gerade.

Sei (S,B,µ) Maßraum und C [mm] \in [/mm] B eine Mengenalgebra die B (eine Sigma Algebra) erzeugt. Z.z.:
Zu jedem Element der Sigma Algebra und jedem [mm] \varepsilon [/mm] > 0 gibt ein Element in C mit

µ(B-C  [mm] \cup [/mm] C-B) < [mm] \varepsilon [/mm]

Das bedeudet B-C und C-B müssen Nullmengen sein. Einige andere Gedanken schwirren mir durch den Kopf. Kann mir jemand helfen?

[kopfkratz]

hakan

        
Bezug
Vervollständigung : Antwort
Status: (Antwort) fertig Status 
Datum: 08:58 Fr 12.11.2004
Autor: Stefan

Hallo Hakan!

Die Aussage ist relativ kompliziert. Bringen wir zunächst folgendes in Erinnerung:

Das auf [mm] ${\cal C}$ [/mm] definierte Maß [mm] $\mu_{\vert {\cal C}}$ [/mm] kann auf genau eine Weise zu einem Maß auf [mm] ${\cal B}=\sigma({\cal C})$ [/mm] fortgesetzt werden, und zwar durch das äußere Maß von [mm] $\mu_{\vert {\cal C}}$, [/mm] eingeschränkt auf [mm] ${\cal B}$. [/mm]

Daher gilt für alle $B [mm] \in {\cal B}$: [/mm]

[mm] $\mu(B) [/mm] = [mm] \inf \left\{ \sum\limits_{n=1}^{\infty} \mu(C_n) \, : \, (C_n)_{n \in \IN} \in {\cal U}(B)\right\}$, [/mm]

wobei [mm] ${\cal U}(B)$ [/mm] die Menge aller Folgen [mm] $(C_n)_{n \in \IN}$ [/mm] ist, die $B$ überdecken.

Es seien nun $B [mm] \in {\cal B}$ [/mm] und [mm] $\varepsilon>0$ [/mm] beliebig vorgegeben. Zu zeigen ist die Existenz einer Menge $C [mm] \in {\cal C}$ [/mm] mit

[mm] $\mu(B \Delta [/mm] C):= [mm] \mu((B \setminus [/mm] C) [mm] \cup [/mm] (C [mm] \setminus [/mm] B)) < [mm] \varepsilon$. [/mm]

Nach der obigen Bemerkung gibt es aber eine $B$ überdeckende Folge [mm] $(C_n)_{n \in \IN}$ [/mm] aus [mm] ${\cal C}$ [/mm] mit

(1) $0 [mm] \le \sum\limits_{n=1}^{\infty} \mu(C_n) [/mm] - [mm] \mu(B) [/mm] < [mm] \frac{\varepsilon}{2}$. [/mm]

Weiterhin gibt es ein [mm] $n_0 \in \IN$ [/mm] mit

(2) [mm] $\mu\left( \bigcup_{n=1}^{\infty} C_n \setminus \bigcup_{n=1}^{n_0} C_n \right) [/mm] < [mm] \frac{\varepsilon}{2}$. [/mm]

Es gilt:

[mm] $C:=\bigcup_{n=1}^{n_0} C_n \in {\cal C}$, [/mm] da [mm] ${\cal C}$ [/mm] eine Mengenalgebra ist.

Wir wollen zeigen, dass $C$ die gesuchte Menge aus [mm] ${\cal C}$ [/mm] ist.

Zunächst einmal gilt:

$B [mm] \Delta [/mm] C= (B [mm] \setminus [/mm] C) [mm] \cup [/mm] (C [mm] \setminus [/mm] B) [mm] \subset \left( \bigcup_{n=1}^{\infty} C_n \setminus C \right) \cup \left( \bigcup_{n=1}^{\infty} C_n \setminus B \right)$, [/mm]

und somit:

[mm] $\mu(B \Delta [/mm] C)$

[mm] $\le \mu \left( \bigcup_{n=1}^{\infty} C_n \setminus C \right) [/mm] + [mm] \mu \left( \bigcup_{n=1}^{\infty} C_n \setminus B \right)$ [/mm]

$ = [mm] \mu \left( \bigcup_{n=1}^{\infty} C_n \setminus C \right) [/mm] + [mm] \mu \left( \bigcup_{n=1}^{\infty} C_n \right) [/mm] - [mm] \mu(B)$ [/mm]

[mm] $\le \mu \left( \bigcup_{n=1}^{\infty} C_n \setminus C \right) [/mm] + [mm] \sum\limits_{n=1}^{\infty} \mu(C_n) [/mm] - [mm] \mu(B)$ [/mm]

$ [mm] \stackrel{(1),(2)}{<} \varepsilon$. [/mm]

Liebe Grüße
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]