matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitstheorieVerteilungskonvergenz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Wahrscheinlichkeitstheorie" - Verteilungskonvergenz
Verteilungskonvergenz < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Verteilungskonvergenz: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 16:38 Sa 10.01.2009
Autor: Johie

Aufgabe
Betrachte eine Folge normalverteilter Zufallsvariablen [mm] X_n [/mm] ~ [mm] N(\mu_n, \sigma_n^2) [/mm] wobei die Folge der Erwartungswerte und Standardabweichungen konvergieren:
[mm] \mu_n \to \mu, \sigma_n \to \sigma [/mm] mit n [mm] \to\infty [/mm]

a) Es sei [mm] \sigma [/mm] >0 und X eine weitere Zufallsvariable mit [mm] X~N(\mu, \sigma^2). [/mm] Zeige [mm] N(\mu_n, \sigma_n^2) \to N(\mu,\sigma^2) [/mm] mit n [mm] \to\infty. [/mm]

b) Es sei [mm] \sigma [/mm] =0 und X eine weitere Zufallsvariable mit [mm] X~Dirac(\mu). [/mm] Zeige [mm] N(\mu_n, \sigma_n^2) \to Dirac(\mu) [/mm] mit n [mm] \to \infty. [/mm]

Hallo, habe hier schon wieder echt dolle Probleme :(

Also a) habe ich soweit schon gelöst, dass ging ja recht einach. Aber bei b) habe ich jetzt Schwierigkeiten.
Habe mir überlegt, da ich a) ja schon gezeigt habe, brauche ich bei b) ja nur noch zu zeigen, dass [mm] N(\mu, \sigma^2) \to Dirac(\mu) [/mm] mit [mm] X_0~N(\mu, \sigma^2) [/mm]

Mein Problem besteht jetzt darin, dass ich nicht so genau weiß, was diese Dirac-Verteilung ist. Ich weiß schon mal soviel, dass sie zwischen 0 und 1 springt und somit der Indikatorfunktion des Intervalls [a, [mm] \infty) [/mm] genügt. Dass heißt ich kann diese aufstellen:
[mm] Fx(x)=\begin{cases} 0, ? \\ 1, ? \end{cases} [/mm]
Ja und hier weiß ich dann nicht, auf was sich das beziehen soll, eigentlich müsste es doch [mm] x<\mu [/mm] und [mm] x>=\mu [/mm] sein oder?

        
Bezug
Verteilungskonvergenz: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 23:22 Sa 10.01.2009
Autor: Johie

Also habe jetzt meinen Ansatz einfach mal aufgegriffen und es ausprobiert, wenn die Funktion richtig wäre, dann müsste das ganze doch dann so gehen:

[mm] F_x(x)=\begin{cases} 0, & \mbox{für } x \ge \mu \\ 1, & \mbox{für } x < \mu \end{cases} \forall [/mm] x [mm] \in \IR [/mm]

Normalverteilung:
[mm] F_x_0 (x)=\integral_{-\infty}^{\bruch{1}{\sigma}(x-\mu)}{\bruch{1}{\wurzel{2 \pi}} *e^{-\bruch{1}{2}z^2} dz} [/mm]

Und das muss ich dann doch für die beiden Fälle prüfen:
1. Fall x < [mm] \mu [/mm]
(in diesem Fall geht dann [mm] \bruch{1}{\sigma}(x-\mu) \to -\infty) [/mm]

[mm] \limes_{\sigma\rightarrow 0} F_x_0 [/mm] (x) = [mm] \limes_{\sigma\rightarrow 0} \integral_{-\infty}^{\bruch{1}{\sigma}(x-\mu)}{\bruch{1}{\wurzel{2 \pi}} *e^{-\bruch{1}{2}z^2} dz} [/mm]
= [mm] \integral_{-\infty}^{-\infty}{\bruch{1}{\wurzel{2 \pi}} *e^{-\bruch{1}{2}z^2} dz} [/mm] = 0

2. Fall x [mm] \ge \mu [/mm]
(in diesem Fall geht dann [mm] \bruch{1}{\sigma}(x-\mu) \to \infty) [/mm]

[mm] \limes_{\sigma\rightarrow 0} F_x_0 [/mm] (x) = [mm] \limes_{\sigma\rightarrow 0} \integral_{-\infty}^{\bruch{1}{\sigma}(x-\mu)}{\bruch{1}{\wurzel{2 \pi}} *e^{-\bruch{1}{2}z^2} dz} [/mm]
= [mm] \integral_{-\infty}^{\infty}{\bruch{1}{\wurzel{2 \pi}} *e^{-\bruch{1}{2}z^2} dz} [/mm] = ...

Eigentlich müsste es jetzt 1 ergeben, dann würde das bedeuten, dass die Normalverteilung gegen Dirac läuft oder nicht? Ist das eine Möglichkeit zur Lösung?

Bezug
                
Bezug
Verteilungskonvergenz: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:20 Mi 14.01.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Verteilungskonvergenz: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:20 Mo 12.01.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]